Numerical modelling of disease propagation
Témavezető: | Faragó István |
ELTE TTK, Matematikai Intézet, Alkalmazott Analízis és Számításmatematikai Tanszék | |
email: | istvan.farago@ttk.elte.hu |
Projekt leírás
Mathematical models are efficient tools of modeling disease propagation. In the most popular compartmental models, the population is considered to be homogeneously mixed and the individuals are classified according to their relation to the disease. In this research, we pay special attention to common epidemic-spreading processes. We examine the systems of differential equations that serve as a model to describe the phenomenon. By constructing the appropriate discrete numerical models, we analyze each model with computer results.
Előfeltételek
Basic (BSc level) knowledge on differential equations, numerical method, and Matlab.
Hivatkozások
V. Capasso, Mathematical Structures of Epidemic Systems, in: Lecture Notes in Biomathematics, vol. 97, Springer, 2008. I. Faragó, M. Mincsovics, R. Mosleh, Reliable numerical modelling of malaria propagation, Application of Mathematics, Springer , 63 (2018), 259-271. P. Mandal, I. Farago. Operator splitting and error analysis in malaria modeling, Applied Mathematics and Computation 410 (2021) 126446
Korábbi hallgatók
- Szemenyei Adrián László: Numerical modelling of disease propagation (2021/22 I. félév Önálló projekt, szakmai gyakorlat I)
- Szemenyei Adrián László: Numerical modelling of disease propagation (2021/22 II. félév Önálló projekt, szakmai gyakorlat II)
- Szemenyei Adrián László: Numerical modelling of disease propagation (2022/23 I. félév Önálló projekt, szakmai gyakorlat III)