Comparison of iterative methods for discretized nonsymmetric elliptic problems
Témavezető: | Karátson János |
ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék | |
email: | karatson66@gmail.com |
Projekt leírás
Discretized elliptic problems are typically solved by a preconditioned Krylov iterative method. For nonsymmetric linear systems there exist several versions of Krylov iterations, but none of them can be considered as the best for all problems. The goal of the project is to code some of these methods and test their performance for various model problems arising from elliptic convection-diffusion PDEs, and study the relation of the results to the coefficients of the PDE.
Előfeltételek
Reading scientific papers in English, coding in Matlab
Hivatkozások
[1] Saad, Y., Iterative methods for sparse linear systems, SIAM, Philadelphia, PA, 2003.
[2] Nachtigal, N, Reddy, S, Trefethen, L. N., How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl.13(1992), no.3, 778–795.
[3] Meurant, G., Tebbens, D., Krylov methods for nonsymmetric linear systems—from theory to computations. Springer, 2020.
Hallgató
Korábbi hallgatók
- Lados Bálint István: Comparison of iterative methods for discretized nonsymmetric elliptic problems (2023/24 I. félév Önálló projekt, szakmai gyakorlat I)
- Lados Bálint István: Comparison of iterative methods for discretized nonsymmetric elliptic problems (2023/24 II. félév Önálló projekt, szakmai gyakorlat II)