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 1.INTRODUCTION : The neural network has recently attracted many mathematicians and one of 

the  simplest model is called Hopfield model ,it defines as a reccurent neurel network ,the main aim in this 

paper is to determine the dynamics of this model in special structure of the weight matrix but first let us 

introduce the differntial equations which discribed by hopfield and what the weight matrix is :                          

𝑥̇ = 𝐷𝑥 + 𝑊𝑦 + 𝐼     ,    𝑦𝑖 = 𝑓(𝑥𝑖)...........................(*) 

where x denotes the membrane potential and y represents the firing rate of neurons  , I is the external 

input, the matrix W contains the strengths of connections and f is the activation function. in this paper  we 

will introduce some types of the so called bifurcations and the steady states of the model, the bifurcation 

which we present in this paper we calculate using analytical and numerical tools .in special a structure of 
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We use the sigmoid function 𝑓(𝑥)  =  
1

(1 + 𝑒(a − bx))
 as activation function ,b > 0 and let D be identity matrix 

and  assume that the neurons do not receive any external input ,then the model of system in the top can be 

written as     𝑥̇𝑖 = −𝑥𝑖 + ∑ 𝑤𝑘𝑓(𝑥𝑘) −𝑛
𝑘=1 𝑤𝑖𝑓(𝑥𝑖)…………….(1)                                                 

2. The homogenous network : if the network contains neurons with equal weights then the system (2) 

can be traced back to a lower dimensional system  so we have the theorem which says : If i and j such 

indices that 𝑤 𝑖 =  𝑤𝑗 > 0 , then t → |𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)| is strictly  

decreasing and lim t→+∞ |𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)| = 0, i.e. 𝑥𝑖 equals 𝑥𝑗 in steady states and on periodic orbits. 



let us investigate the dynamics of the Hopfield model when the size of the network is arbitrary but each 

neuron has the same w > 0 weight. According to previous Theorem , the solutions become asymptotically 

equal so it is enough to study the behavior of a one-dimensional system instead of system (1). 

Corollary : If there exists such w that w = wi ∀ i, then the 

 𝑥˙ =  −𝑥 +  (𝑛 −  1)𝑤𝑓(𝑥)                                                      (2) 

 determines the asymptotic behaviour of system (1). 

We determine by the saddle-node bifurcation curve the bihaviour of the system. First, we look at the 

equilibrium points (RHS(2)=0):                    −𝑥 +  (𝑛 −  1)𝑤𝑓(𝑥) = 0                              (3) 

We compute the derivative of the equation :     −1 + (𝑛 −  1)𝑤𝑓′(𝑥) = 0         (4) 

 Let us apply the activation function   𝑓(𝑥)  =  
1

(1 + 𝑒(a − bx))
    for (3) and (4) and get the bifurcation 

parameter w then substitute it into (4) and we get the saddle-node bifurcation curve parametrized with x  . 

We fix b=1 and the neuros n=10 to plot the bifurcation curve   The saddle-node curve divides the 

parameter plane into two domains A and B (A has one equilibruim point which is globaly stable ) (B has 3  

equilibruim points   Two of the three steady states are stable while the third one is unstable )      as we 

have seen in this figure  

             

3.the effect of an inhibitory neurons :   we  consider a network contains n-1 neurons with wight w >0 

and one neuron has arbitrary wight w1 arbitrary so one column of the weight matrix W is different from the 

others,we choose the weights w and w1 as bifurcation parameters then determine the dynamics of the 

model ,if there exists wi > 0   ∀ i=2,n  according to theorem 1 then the solutions become asymptotically 

equal  (x1, x2) satisfies system (2), where x2 = xi ∀ i = 2, ..., n and the weight w1 of x1 is arbitrary. 

Corollary :if there exists w=wi >0 ∀ i = 2, ..., n and w1 arbitrary then we have the differential system 

describe the asymptotic behavior of system (1): 

                                   𝑥1˙ =  −𝑥1  +  (𝑛 − 1)𝑤𝑓(𝑥𝑗)               ………………(5) 



                    𝑥𝑗˙ =  −𝑥𝑗  +  (𝑛 −  2)𝑤𝑓(𝑥𝑗) + 𝑤𝑓(𝑥1)              ........................(6) 

3.1 Saddle-node bifurcation:  we search about which parameter values cause the change in the number of 

steady states, we determine the equilibrium points from (5) and (6) and eliminate 𝑥1 from (5) we plug 𝑥2 

in (6) then we get : 

−𝑥2  +  𝑤1𝑓 ((𝑛 −  1) 𝑤𝑓 (𝑥2))  +  (𝑛 −  2) 𝑤𝑓 (𝑥2)  =  0 .....................(7) 

Then we derivate it and get 𝑤1 from (7) and sustitute it in the derivative then we get the equation  

−1 +
𝑥2−(𝑛 − 2)𝑤𝑓 (𝑥2)

𝑓 ((𝑛 − 1)𝑤𝑓 (𝑥2))
 𝑓′((𝑛 −  1)𝑤𝑓 (𝑥2))(𝑛 −  1)𝑤𝑓′(𝑥2) + (𝑛 −  2)𝑤𝑓′(𝑥2) = 0    .........(8) 

This equation determines the saddle-node bifurcation curve in system (5) and (6) .we substitute w from 

derivative of (7) and  and approximate it numerically using bisection method . 

3.2 Andronov-Hopf bifurcation:   let us investigate their stability of (5) and (6) by the equilibrium points 

. we determine the Jacobian matrix of system (5)-(6): 

𝐽 = (
−1 (𝑛 −  1)𝑤𝑓′(𝑥2)

𝑓′((𝑛 −  1)𝑤𝑓 (𝑥2)) −1 + (𝑛 −  2)𝑤𝑓′(𝑥2)
) 

We apply  the necessary condition of the bifurcation : I) trace(J)=0    II) det(J)>0 

we use that the activation function 𝑓(𝑥)  =  
1

(1 + 𝑒(a − bx))
  satisfies 𝑓′ =  𝑏𝑓(1 − 𝑓) 

we eliminate w from   −2 + (𝑛 −  2)𝑤𝑓(𝑥2) = 0  and  we have w1 from the derivative of 

(7) so we get the folowing :       𝑤1 =
𝑥2−(𝑛 − 2)𝑤𝑓′(𝑥2)

𝑓′((𝑛 − 1)𝑤𝑓 (𝑥2))
 

                                                         𝑤 =
2

(𝑛 – 2)𝑓(𝑥2)(1−𝑓 (𝑥2))𝑏
 

             0 < 1 − (𝑛 − 2)𝑤𝑏𝑓(𝑥2)(1 − 𝑓(𝑥2))

− (𝑛 − 1)𝑤𝑤1𝑏2𝑓(𝑥2)(1 − 𝑓(𝑥2))𝑓((𝑛 − 1)𝑤𝑓(𝑥2)) (1 − 𝑓((𝑛 − 1)𝑤𝑓(𝑥2))). 

These parameters give the Andronov-Hopf bifurcation curve. 

3.5 Dynamics of the Hopfield model: we fix the parameters a = 2, b = 1 and n = 10 to plot all bifurcation 

curves we have determined ,there are 3 domains a domain A of the system (5)-(6) has one equilibrium 

which is globally stable Crossing the saddle-node bifurcation curve we can find three steady states in 

domain B. The first one is unstable, the second one is a saddle and the third one is stable. The first fixed 

point becomes stable if we cross the Andronov-Hopf bifurcation curve and an unstable limit cycle appears 

around it in the domain C. 

 



 

Figure 2: Saddle-node (red), Andronov-Hopf (blue) bifurcation curves in system (5)-(6) with a = 2, b = 1 

and n=10 

 4.Conclusion: The main goal of this paper is to determine the dynamics of the Hopfield model given in 

(*)  we studied the  model with n neurons and have the same positive wight we call that  the homogenous 

network we find how the bihavour of model’s system and we get the saddle node bifurcations  and we use 

a and w  as bifurcations parameters then we consider a special network  which is inhibitory network we 

take  n-1 neuron with the same positive wight and one neuron with arbitrary wight w1 and we use w and 

w1  as bifurcation parameters then we get the number of steady states of the system we use the saddle node 

bifurcation to investigate the steady states then we use andronov-hopf bifurcation to know the stability of  

the equilibrium  points  then We determined the behaviour of the model in each domain with fixed 

parameters a = 2, b = 1 and n = 10 then we matlab to show the steady states of the equilibrium  and their 

stability and phase portrais of the model (in presentation). 
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