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1 Summary

In the previous semester, I focused on the basic definitions of the signature and

mostly on examples that are one dimensional to fully understand the basic notions.

Remark. Let us assume Xt : [a, b] 7→ Rm, then the signature of the path Xt is an

infinite series of the iterated integrals

S(X)a,b = (1, S(X)1
a,b, S(X)2

a,b . . . , S(X)m
a,b, S(X)11

a,b, . . .).

S(X)i
a,t =

∫
a<s<b dXi

s = Xi
t − Xi

0

S(X)i,j
a,t =

∫
a<s<b S(X)i

a,s dX j
s =

∫
a<r<s<t dXi

rdX j
s(1)

However, this time, I have studied the properties of signature, which will be

useful for computations and statistical problems, since it is a way to analyse time

series. Moreover, I have tried to work with the Geometric Brownian motion, which

will be significant when we deal with financial data in the future.

2 Properties

2.1 Reparametrization

The first property states that, the signature S(X)a,b remains invariant under time

reparametrizations of X.

Proof. We have two paths X, Y : [a, b] → R, we denote the reparametrization by

ϕ : [a, b] → [a, b]. We assign new paths : Xϕ = X̄, Yϕ = Ȳ. If we differentiate X̄, we

get : (X̄t)′ = (Xϕ(t))
′ = (Xϕ(t))

′ ∗ (ϕ(t))′. It means∫ b

a
Ȳt dXt =

∫ b

a
Ȳt Xϕ(t))

′ ∗ ϕ(t)′ (2)

by substituting u = ϕ(t)∫ b

a
Ȳt dXt =

∫ b

a
Ȳt Xϕ(t))

′ ∗ ϕ(t)′ =
∫ b

a
Ȳu dXu (3)



2.2 Shuffle product

The next fundamental property is useful when we deal with higher dimensions,

since we it allows us to describe the product of two signature terms as a summation

using other terms. Additionally, the signature satisfies the shuffle product formula

for every path X, this was discovered by Chen in 1957.

Definition 2.1. A (k, m) shuffle is a permutation of {1, . . . , k +m} if σ−1(1) < · · · <

σ−1(k) and σ−1(k + 1) < · · · < σ−1(k + m). Notation of collection of all (k, m)

shuffles : Shuffle(k, m)

Given two multi-indexes, I = {i1, . . . , ik} and J = {j1, . . . , jm}, (i1, . . . , ik, j1, . . . , jm ∈

{1, . . . , d}), the shuffle product of I and J, which we denote by I� J = {(rσ(1), . . . , rσ(k+m))|

σ ∈Shuffle(k, m)}.

Theorem 2.1. We have a path X : [a, b] 7→ Rd, and I = (i1, . . . , ik) and J =

(j1, . . . , jm), (i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , d}), then

SI(X)SJ(X) = ∑
K∈I�J

SK(X) (4)

Proof.

SI(X)SJ(X) =
∫
· · ·

∫
0<u1<···<uk<1

dXi1
u1 . . . dXik

uk

∫
· · ·

∫
0<t1<···<tm<1

dX j1
t1

. . . dX jm
tm

=

= ∑
σ∈Shu f f les(k,m)

∫
· · ·

∫
0<v1<···<vk+m<1

dX
rσ(1)
v1 . . . dX

rσ(k+m)

vk+m == ∑
K∈I�J

SK(X)

2.3 Chen’s identity

Before continuing to define the Chen’s identity, we should know what is the formal

power series and a concatenation of two paths.



Definition 2.2. We call the vector space of series a non-commuting formal power

series if, for all el, when l ∈ [1, d] indeterminates, it has a form of

∞

∑
k=0

∑
i1,...,ik∈{1,...,d}

λi1,...,ik ei1,...,ik , λ ∈ R. (5)

Note that the space of formal power series is an algebra, if it has the usual scalar

multiplication, addition and the tensor product.

But how is it related to signatures and paths, one may ask. The answer is

simple, we can express our signatures with the help of the previous definition,

which becomes clear if we observe the multi indices.

S(X)a,b =
∞

∑
k=0

∑
i1,...,ik∈{1,...,d}

S(X)i1,...,ik
a,b ei1,...,ik . (6)

Definition 2.3. Let X : [a, b] 7→ Rd,Y : [b, c] 7→ Rd, then the concatenation of X and

Y is a path from [a, c] 7→ Rd:

(X ∗Y)t=


Xt, if t ∈ [a, b]

Xb + (Yt −Yb), if t ∈ [b, c].

Theorem 2.2 (Chen’s identity). As usual, let us have two paths X : [a, b] 7→ Rd,Y :

[b, c] 7→ Rd, then

S(X ∗Y)a,c = S(X)a,b ⊗ S(Y)b,c. (7)

Proof. To start proving, we should remember what is a signature and what are the

coordinate paths:

S(X) = (1, X, X2, . . . ) (8)

Xn =
∫
· · ·

∫
0<u1<···<un<1

dXu1 ⊗ · · · ⊗ dXun . (9)



Now, lets assign a new path Z = X ∗Y, it means

Zn =
∫
· · ·

∫
s<u1<···<un<u

dZu1 ⊗ · · · ⊗ dZun =

=
n

∑
k=0

∫
· · ·

∫
s<u1<···<uk<t<uk+1<un<u

dZu1 ⊗ · · · ⊗ dZun =

=
n

∑
k=0

∫
· · ·

∫
s<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXuk

∫
· · ·

∫
t<u1+k<···<uk<u

dXuk+1 ⊗ · · · ⊗ dXun =

=
n

∑
k=0

Xk ⊗Yn−k

(10)

2.4 Uniqueness and Time reversal

Definition 2.4. A path X : [0, 1] 7→ Rd is tree-like, if ∃ f : [0, 1] 7→ [0, ∞) : f (0) =

f (1) = 0 and ∀s, t ∈ [0, 1], s ≤ t :

‖Xs − Xt‖ ≤ f (s) + f (t)− 2 inf
u∈[s,t]

f (u). (11)

Theorem 2.3. Assume X, Y : [a, b] 7→ Rd, then

∀t ∈ [a, b] : Xt = Yt =⇒ ∀k ∈ {1, . . . , d} : Sk(X) = Sk(Y). (12)

Theorem 2.4 (Time reversed signature). If we have a path X : [a, b] 7→ Rd, then the

following is true:

S(X)a,b ⊗ S(
←−
X )a,b = 1. (13)

Here
←−
X is the time reversal, meaning

←−
X t = Xa+b−t, ∀t ∈ [a, b].

Definition 2.5. Two paths X and Y are called tree-like equivalent if X*
←−
Y is tree-like

(where
←−
Y t = Y1t).

Now, since we defined a tree-like path we can state the uniqueness theorem.



Theorem 2.5. Assume X is a continuous path with bounded variation, then S(X) =

1 ⇐⇒ X is tree-like, additionally S(X) is unique up to a tree-like equivalence.

Which means that, the equivalence in Definition 2.5 is the same as Theorem 2.3.

After all these properties, we can conclude, the path cannot be simply recon-

structed from its signature in the exact speed it travels, because of the time invari-

ance property. However, it is not an awful thing, since we are unable to reconstruct

a Geometric Brownian motion from only its volatility and drift. Furthermore, when

X does not cross itself, meaning it is a tree-like path, we can recreate the geometry

of the traverse of our path.

3 Application

After reviewing all fundamental information we have now a grasps on how signa-

ture works in theory, but how do we use all these in real life?

The most known theorem for approximating functions is Taylor’s theorem (The-

orem 3.1), and signature describes the same thing, but for rough paths we do not

have partial derivatives.

Theorem 3.1. f (x, y) ≈ f (a, b) + (x− a) fx(a, b) + (y− b) fy(a, b)

Remark. While it is true if we take higher derivatives we get a better approximation

even in the signature method (going with higher multi-indices), for now we will

only go until second derivative and multi-indices such as S1, S2, S1,1, S1,2, S2,1, S2,2.

The advantage of using the signature method is that any multivariate distribu-

tion of data could be represented as a path in a high-dimensional space Rd.

The process of using signature would be the following:

1. We have a data stream

2. Embed it to Rd



3. Compute the iterated integrals up to a level of truncation

4. Use the resulting set of features for analysing the data/forecasting

In this stage of the project, the data stream is a Geometric Brownian motion.

Unfortunately, Theorem 3.2 from [5] states that the Brownian motion is nowhere

differentiable, almost surely. Therefore, we have :

f (X) = c0 + c1S(X)1
a,b + c2S(X)2

a,b + c1,1S(X)1,1
a,b . . . .

We may have a list of data, which we need to reconstruct as a path. They

are many ways to do so, for example, piece-wise linear interpolation, rectilinear

interpolation or lead-lag transformation, which we will see in the next example.

Example 3.1. Let us say {X1} = {1, 2, 5, 6}, {X2} = {1, 6, 5, 3}, then the em-

bedding with lead-lag would look like this: X1,lead = {1, 2, 2, 5, 5, 6, 6} ,X1,lag =

{1, 1, 2, 2, 5, 5, 6}. Also, after using the definitions and calculating integrals we get

S(X) = {5, 2, 12.5,−9, 19, 2}.

S1(X) = X1
3 − X1

0 = 6− 1 = 5, S2(X) = X2
3 − X2

0 = 3− 1 = 2,

S1,1 = (X1
3 − X1

0)
2/2 = 25/2, S2,2 = (X2

3 − X2
0)

2/2 = 4/2,

S1,2 =
∫ 3

0

∫ 3
0 dX1

t1
dX2

t2
=

I have computed the slope for X1 is (1, 3, 2), for X2 it is (5,−1,−2).

=
∫ 1

0

[∫ t2
0 dX1

t1

]
5dt2 +

∫ 2
1

[∫ t2
0 dX1

t1

]
(−1)dt2 +

∫ 3
2

[∫ t2
0 dX1

t1

]
(−2)dt2=

=
∫ 1

0

[
Xt2 − X0

]
5dt2 +

∫ 2
1

[
Xt2 − X0

]
(−1)dt2 +

∫ 3
2

[
Xt2 − X0

]
(−2)dt2

=
∫ 1

0 [t2 + 1− 1] 5dt2 +
∫ 2

1 [2t2 + 1− 1] (−1)dt2 +
∫ 3

2 [2t2 − 1] (−2)dt2

= −9

One difficult thing I have encountered while trying to calculate the signature

would be the integrals especially without calculators or computers. Hence, we

installed iiisignature with python which helps us to efficiently and quickly get our

results.

pip i n s t a l l i i s i g n a t u r e

import i i s i g n a t u r e as i s i g



import numpy as np

data= ( [ 1 , 1 ] , [ 2 , 6 ] , [ 5 , 5 ] , [ 6 , 3 ] )

i s i g . s i g ( data , 2 , 1 )

output : ( array ( [ 5 . , 2 . ] ) , array ( [ 1 2 . 5 , −9. , 1 9 . , 2 . ] ) )

After comfirming it works with small data, we used a Geometric Brownian motion

to get an array of data, embedded it into two dimension with lead and lag, and

calculated the signature until second index, which can be seen in Appendix A.



Appendices

A Appendix

T-terminal time =1, M-number of trajectories simulated = 1 , N- discretization steps

= 20, S0- initial value=100, µ-percentage drift= 0, 12 , σ-percentage volatility= 0, 4

a= GBM ( 1 , 1 , 2 0 , 1 0 0 , 0 . 1 2 , 0 . 4 )

output : [ 1 0 0 . , 112 .19674716 , 120 .75779981 , 112 .30981599 ,

110 .25433323 , 107 .39849392 , 120 .05993343 , 117 .99859133 ,

121 .8077703 , 124 .27239813 , 120 .24479168 , 133 .08840477 ,

153 .28971954 , 169 .64404622 , 159 .61469816 , 182 .77965264 ,

174 .34866999 , 162 .76767572 , 143 .07567381 , 153 .54534991 ,

159 .22370008 ]

data =( lead , lag as p a i r s ) :

[ [ 1 0 0 . , 1 0 0 . ] ,

[ 1 1 2 . 1 9 6 7 4 7 1 6 , 1 0 0 . ] ,

[ 1 1 2 . 1 9 6 7 4 7 1 6 , 1 1 2 . 1 9 6 7 4 7 1 6 ] ,

[ 1 2 0 . 7 5 7 7 9 9 8 1 , 1 1 2 . 1 9 6 7 4 7 1 6 ] ,

[ 1 2 0 . 7 5 7 7 9 9 8 1 , 1 2 0 . 7 5 7 7 9 9 8 1 ] ,

[ 1 1 2 . 3 0 9 8 1 5 9 9 , 1 2 0 . 7 5 7 7 9 9 8 1 ] ,

[ 1 1 2 . 3 0 9 8 1 5 9 9 , 1 1 2 . 3 0 9 8 1 5 9 9 ] ,

[ 1 1 0 . 2 5 4 3 3 3 2 3 , 1 1 2 . 3 0 9 8 1 5 9 9 ] ,

[ 1 1 0 . 2 5 4 3 3 3 2 3 , 1 1 0 . 2 5 4 3 3 3 2 3 ] ,

[ 1 0 7 . 3 9 8 4 9 3 9 2 , 1 1 0 . 2 5 4 3 3 3 2 3 ] ,

[ 1 0 7 . 3 9 8 4 9 3 9 2 , 1 0 7 . 3 9 8 4 9 3 9 2 ] ,

[ 1 2 0 . 0 5 9 9 3 3 4 3 , 1 0 7 . 3 9 8 4 9 3 9 2 ] ,

[ 1 2 0 . 0 5 9 9 3 3 4 3 , 1 2 0 . 0 5 9 9 3 3 4 3 ] ,

[ 1 1 7 . 9 9 8 5 9 1 3 3 , 1 2 0 . 0 5 9 9 3 3 4 3 ] ,



[ 1 1 7 . 9 9 8 5 9 1 3 3 , 1 1 7 . 9 9 8 5 9 1 3 3 ] ,

[121 .8077703 , 1 1 7 . 9 9 8 5 9 1 3 3 ] ,

[121 .8077703 , 121 .8077703 ] ,

[ 1 2 4 . 2 7 2 3 9 8 1 3 , 121 .8077703 ] ,

[ 1 2 4 . 2 7 2 3 9 8 1 3 , 1 2 4 . 2 7 2 3 9 8 1 3 ] ,

[ 1 2 0 . 2 4 4 7 9 1 6 8 , 1 2 4 . 2 7 2 3 9 8 1 3 ] ,

[ 1 2 0 . 2 4 4 7 9 1 6 8 , 1 2 0 . 2 4 4 7 9 1 6 8 ] ,

[ 1 3 3 . 0 8 8 4 0 4 7 7 , 1 2 0 . 2 4 4 7 9 1 6 8 ] ,

[ 1 3 3 . 0 8 8 4 0 4 7 7 , 1 3 3 . 0 8 8 4 0 4 7 7 ] ,

[ 1 5 3 . 2 8 9 7 1 9 5 4 , 1 3 3 . 0 8 8 4 0 4 7 7 ] ,

[ 1 5 3 . 2 8 9 7 1 9 5 4 , 1 5 3 . 2 8 9 7 1 9 5 4 ] ,

[ 1 6 9 . 6 4 4 0 4 6 2 2 , 1 5 3 . 2 8 9 7 1 9 5 4 ] ,

[ 1 6 9 . 6 4 4 0 4 6 2 2 , 1 6 9 . 6 4 4 0 4 6 2 2 ] ,

[ 1 5 9 . 6 1 4 6 9 8 1 6 , 1 6 9 . 6 4 4 0 4 6 2 2 ] ,

[ 1 5 9 . 6 1 4 6 9 8 1 6 , 1 5 9 . 6 1 4 6 9 8 1 6 ] ,

[ 1 8 2 . 7 7 9 6 5 2 6 4 , 1 5 9 . 6 1 4 6 9 8 1 6 ] ,

[ 1 8 2 . 7 7 9 6 5 2 6 4 , 1 8 2 . 7 7 9 6 5 2 6 4 ] ,

[ 1 7 4 . 3 4 8 6 6 9 9 9 , 1 8 2 . 7 7 9 6 5 2 6 4 ] ,

[ 1 7 4 . 3 4 8 6 6 9 9 9 , 1 7 4 . 3 4 8 6 6 9 9 9 ] ,

[ 1 6 2 . 7 6 7 6 7 5 7 2 , 1 7 4 . 3 4 8 6 6 9 9 9 ] ,

[ 1 6 2 . 7 6 7 6 7 5 7 2 , 1 6 2 . 7 6 7 6 7 5 7 2 ] ,

[ 1 4 3 . 0 7 5 6 7 3 8 1 , 1 6 2 . 7 6 7 6 7 5 7 2 ] ,

[ 1 4 3 . 0 7 5 6 7 3 8 1 , 1 4 3 . 0 7 5 6 7 3 8 1 ] ,

[ 1 5 3 . 5 4 5 3 4 9 9 1 , 1 4 3 . 0 7 5 6 7 3 8 1 ] ,

[ 1 5 3 . 5 4 5 3 4 9 9 1 , 1 5 3 . 5 4 5 3 4 9 9 1 ] ,

[ 1 5 9 . 2 2 3 7 0 0 0 8 , 1 5 3 . 5 4 5 3 4 9 9 1 ] ,

[ 1 5 9 . 2 2 3 7 0 0 0 8 , 1 5 9 . 2 2 3 7 0 0 0 8 ] ]

i s i g . s i g ( data , 2 , 1 )



output : ( array ( [ 5 9 . 2 2 3 7 0 0 0 8 , 5 9 . 2 2 3 7 0 0 0 8 ] ) ,

array ( [ 1 7 5 3 . 7 2 3 3 2 5 4 8 , 3113 .58363648 , 393 .86301447 , 1 7 5 3 . 7 2 3 3 2 5 4 8 ] ) )
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