APPLICATION OF SIGNATURES FOR FORECASTING

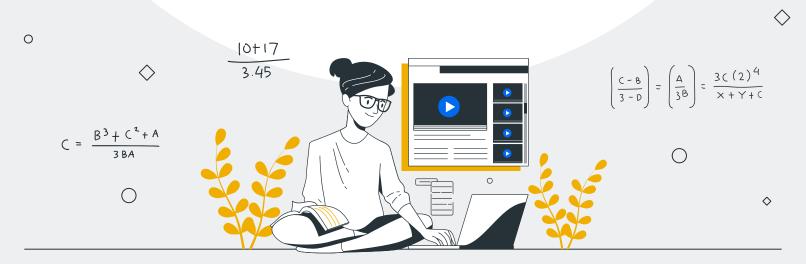


Table of contents

01

Review

About the first semester

02

Properties

Important characteristics

03

Application

Usage of signature

04

Example

Computation/code

Review

3.45

 \bigcirc

0

 \Diamond

Remark. Let us assume $X_t : [a,b] \mapsto \mathbb{R}^m$, then the signature of the path X_t is an infinite series of the iterated integrals

$$S(X)_{a,b} = (1, S(X)_{a,b}^{1}, S(X)_{a,b}^{2}, \dots, S(X)_{a,b}^{m}, S(X)_{a,b}^{11}, \dots).$$
 (1)

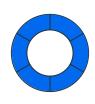
 $\frac{\sqrt{2.8}}{3+2^+}$

0

0

 \Diamond

Review



Examples

0

 \Diamond

$$\frac{\sqrt{2.8}}{3+2^+}$$

0

$$S(X)_{a,t}^{i} = \int_{a < s < b} dX_{s}^{i} = X_{t}^{i} - X_{0}^{i}$$

$$S(X)_{a,t}^{i,j} = \int_{a < s < b} S(X)_{a,s}^{i} dX_{s}^{j} = \int_{a < r < s < t} dX_{r}^{i} dX_{s}^{j}$$

0

 \bigcirc

$$\frac{\sqrt{2.8}}{3+2^{+}}$$

Reparametrization

The signature S(X) remains invariant under time reparametrizations of X.

$$\frac{\sqrt{2}}{\left(\frac{1}{2}\right)2}$$

 \Diamond

• Shuffle product

Theorem 2.1. We have a path $X : [a,b] \mapsto \mathbb{R}^d$, and $I = (i_1,...,i_k)$ and $J = (j_1,...,j_m), (i_1,...,i_k,j_1,...,j_m \in \{1,...,d\})$, then

$$S^{I}(X)S^{J}(X) = \sum_{K \in I \sqcup J} S^{K}(X)$$

Concatenation

Definition 2.3. Let $X : [a,b] \mapsto \mathbb{R}^d$, $Y : [b,c] \mapsto \mathbb{R}^d$, then the concatenation of X and Y is a path from $[a,c] \mapsto \mathbb{R}^d$:

$$(X * Y)_t = \begin{cases} X_t, & \text{if } t \in [a, b] \\ X_b + (Y_t - Y_b), & \text{if } t \in [b, c]. \end{cases}$$

0

 \Diamond

 $\frac{A}{3B}$

 \Diamond

(9)

Theorem 2.2 (Chen's identity). As usual, let us have two paths $X : [a, b] \mapsto \mathbb{R}^d$, $Y : [a, b] \mapsto \mathbb{R}^d$, $Y : [a, b] \mapsto \mathbb{R}^d$

 $[b,c]\mapsto \mathbb{R}^d$, then

$$S(X * Y)_{a,c} = S(X)_{a,b} \otimes S(Y)_{b,c}.$$

Chen's identity

0

Theorem

Definition 2.4. A path $X:[0,1] \mapsto \mathbb{R}^d$ is tree-like, if $\exists f:[0,1] \mapsto [0,\infty):f(0)=f(1)=0$ and $\forall s,t \in [0,1], s \leq t$:

$$||X_s - X_t|| \le f(s) + f(t) - 2\inf_{u \in [s,t]} f(u).$$
 (13)

Theorem 2.3. Assume $X, Y : [a, b] \rightarrow \mathbb{R}^d$, then

0

$$\forall t \in [a,b] : X_t = Y_t \implies \forall k \in \{1,\ldots,d\} : S^k(X) = S^k(Y).$$

0

Theorem

Theorem 2.4 (Time reversed signature). If we have a path $X : [a, b] \mapsto \mathbb{R}^d$, then the following is true:

$$S(X)_{a,b} \otimes S(\overleftarrow{X})_{a,b} = 1. \tag{15}$$

Here \overleftarrow{X} is the time reversal, meaning $\overleftarrow{X}_t = X_{a+b-t}, \forall t \in [a,b]$.

0

 \Diamond

 \bigcirc

Theorem

Theorem 2.3.2 (Uniqueness). Let X be a continuous path with bounded variation. Then,

• S(X) = 1 if and only if X is tree-like.

0

 \Diamond

• The signature S(X) is unique up to tree-like equivalence.

$$\frac{C^3 + 5CA}{2CA}$$

Conclusion

The path cannot be simply reconstructed from its signature in the exact speed it travels, because of the time invariance property.

However, when X does not cross itself, meaning it is a tree-like path, we can recreate the geometry of the traverse of our path.

V2.8

04

Application

How do we use the signature in real life?

0

I would like to approximate a function, what should I do?

Taylor's theorem

But what if we do not have a differentiable function?

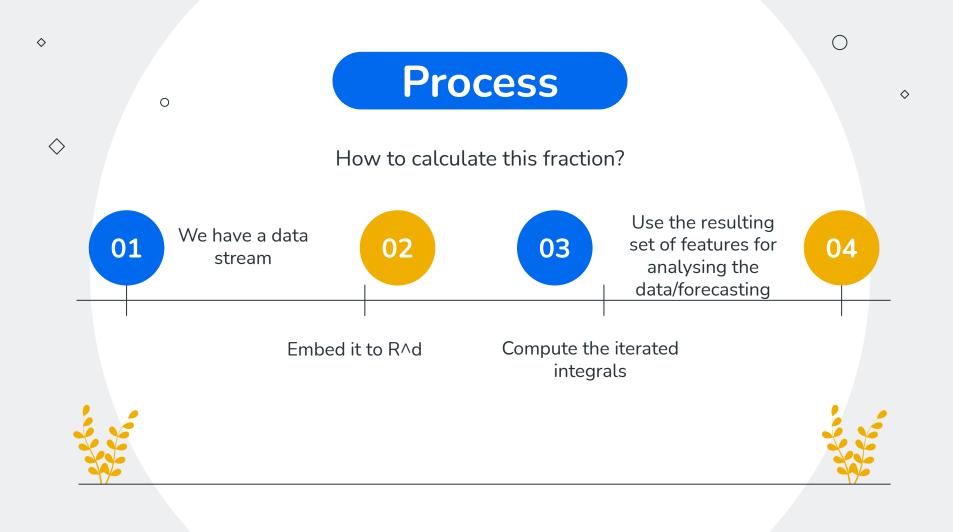
С

Approximation

$$f(X) = c_0 + c_1 S(X)_{a,b}^1 + c_2 S(X)_{a,b}^2 + c_{1,1} S(X)_{a,b}^{1,1} \dots$$

$$\frac{4+6+(2\sqrt{3})}{\sqrt{276}}$$

 \Diamond



Example

$${X^1} = {1,2,5,6}, {X^2} = {1,6,5,3},$$

$$X^{1,lead} = \{1, 2, 2, 5, 5, 6, 6\}, X^{1,lag} = \{1, 1, 2, 2, 5, 5, 6\}.$$

 $S(X) = \{5, 2, 12.5, -9, 19, 2\}.$

 \Diamond

pip install iisignature

import iisignature as isig

import numpy as np

data= ([1,1], [2,6], [5,5], [6,3])

0

isig.sig(data, 2, 1)

output: (array([5., 2.]), array([12.5, -9., 19., 2.]))

Python

0



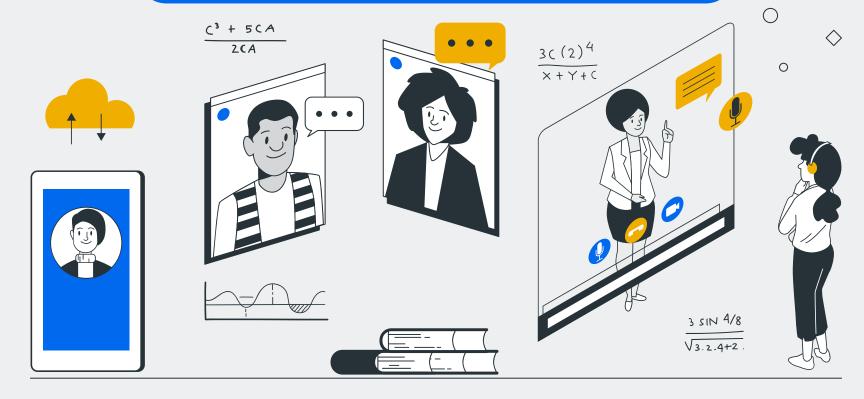
Thank you for your attention!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

Maths icon pack

Alternatives resources



Resources

Vectors

- Webinar landing page template
- Webinar landing page template 2
- Webinar landing page template 3
- Webinar landing page template 4
- Webinar landing page template 5
- Webinar landing page template 6
- Webinar landing page template 7
- Realistic math chalkboard background

Photos

- Young woman talking with her students online
- Chilling girl having coffee watching laptop
- Hands worker typing

Icons

Maths

$$\frac{3(2)^4}{x+y+6}$$

$$\frac{3 \text{ SIN } 4/8}{\sqrt{3.2.4+2}}$$

Instructions for use

In order to use this template, you must credit <u>Slidesgo</u> by keeping the **Thanks** slide.

You are allowed to:

- Modify this template.
- Use it for both personal and commercial projects.

You are not allowed to:

- Sublicense, sell or rent any of Slidesgo Content (or a modified version of Slidesgo Content).
- Distribute Slidesgo Content unless it has been expressly authorized by Slidesgo.
- Include Slidesgo Content in an online or offline database or file.
- Offer Slidesgo templates (or modified versions of Slidesgo templates) for download.
- Acquire the copyright of Slidesgo Content.

For more information about editing slides, please read our FAQs or visit Slidesgo School:

https://slidesgo.com/faqs and https://slidesgo.com/slidesgo-school

Fonts & colors used

This presentation has been made using the following fonts:

Nunito

(https://fonts.google.com/specimen/Nunito)

Storyset

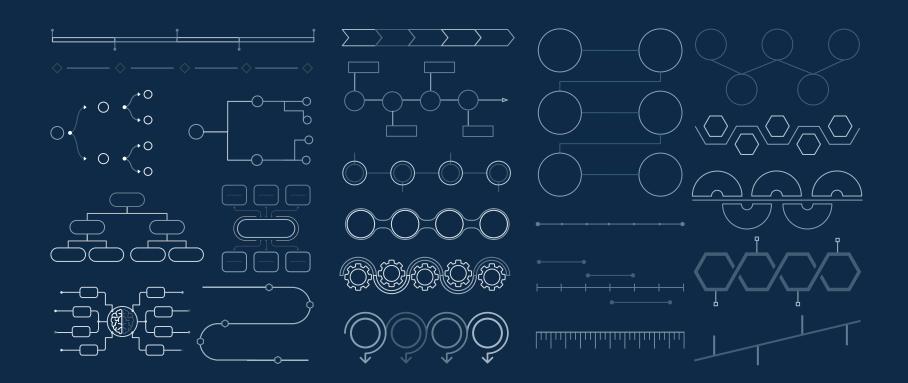
Create your Story with our illustrated concepts. Choose the style you like the most, edit its colors, pick the background and layers you want to show and bring them to life with the animator panel! It will boost your presentation. Check out How it Works.

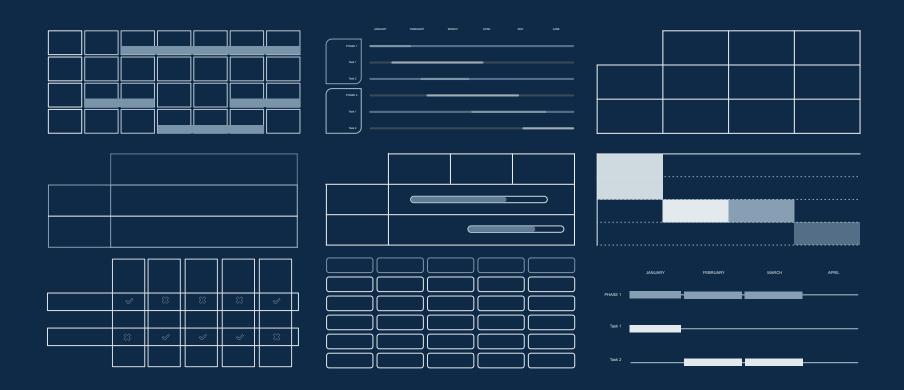
Pana Amico Bro Rafiki Cuate

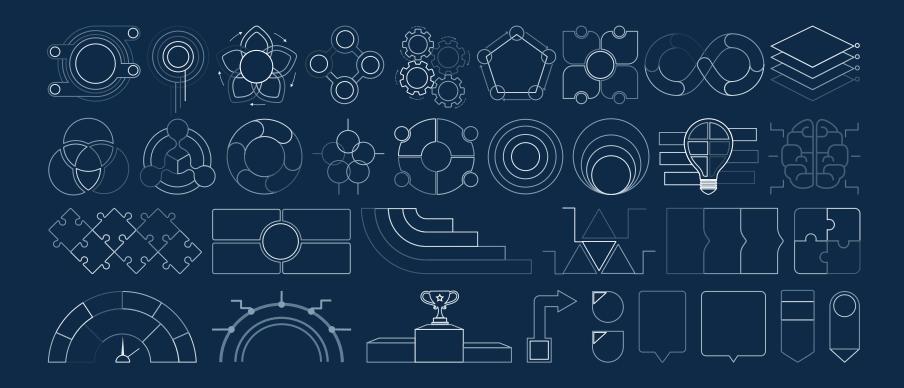
Use our editable graphic resources...

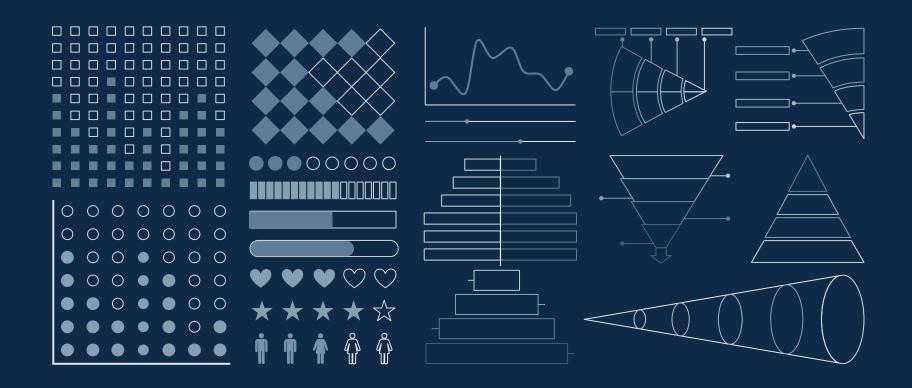
You can easily resize these resources without losing quality. To change the color, just ungroup the resource and click on the object you want to change. Then, click on the paint bucket and select the color you want.

Group the resource again when you're done. You can also look for more infographics on Slidesgo.









...and our sets of editable icons

You can resize these icons without losing quality.

You can change the stroke and fill color; just select the icon and click on the paint bucket/pen. In Google Slides, you can also use Flaticon's extension, allowing you to customize and add even more icons.

Educational Icons

R 門為合品句品

Medical Icons

Business Icons

(S) # # # # # # [S] 西野鱼属加拿里 學為參彩眉光會遍

Teamwork Icons

Help & Support Icons

Avatar Icons

Creative Process Icons

Performing Arts Icons

slidesgo