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1 Non-IID data analysis

We formally introduce Federated Learning in the context of a C−class classification problem, which
is defined over a compact feature space X and a label space Y = [C], where [C] = {1, · · · , C.} Let
(x, y) denote a particular labeled sample. Let f : X → S denote the prediction function, where S =

{z|
∑C
i=1 zi = 1, zi ≥ 0 ∀i ∈ [C]}. That is, the vector valued function f yields a probability vector z for

each sample x, where fi predicts the probability that the sample belongs to the i−th class.
Let the vector w denote model weights. For classification, the commonly used training loss is cross
entropy, defined as

L(w) = Ex,y∼p[
C∑
i=1

1y=i log fi(x,w)] =

C∑
i=1

p(y = i)Ex|y=i[log fi(x,w)]

The learning problem is to solve the following optimization problem:

min
w

C∑
i=1

p(y = i)Ex|y=i[log fi(x,w)]

Why Non-IID data is a trouble? Some recent works ([3]) show that mose decentralized learning al-
gorithms suffer from major model quality loss (or even divergence) when run on non-IID data partitions.
However, it is interesting to note that BSP([5]) is robust to Non-IID data.

Figure[1]. Top-1 validation accuracy for IMAGE CLASSIFICATION over the CIFAR-10 dataset [3]
It is shown that the accuracy may be affected by the exact data distribution, i.e. the skewness of data
distribution. More specifically, the skewness can be roughly interpreted as the distance between the data
distribution on each client and the population distribution. In addition, such distance can be evaluated
with the earth mover’s distance(EMD) between distributions. Based on experiment on real-world dataset,
the test accuracy falls sharply with respect to EMD beyond certain threshold.
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Figure[2]. Ilustration of the weight divergence for federated learning with-IID and non-IID data [7]

2 Non Convex optimization on gradient-based methods

In practical, the objective functions arising in the training of neural networks which are expected to be
non-convex and it shows rich sets of local minima (we denote by x∗) and saddle points. It is also has
rich of critical points (0 ∈ ∇f(x)) and first-order stationary points (‖∇f(x)‖ = 0). We will see different
gradient-based algorithms with convergence guarantee conditions when the objective are non-convex and
even non-smooth in some cases.

2.1 Using local smoothness and maximal nondegeneracy

In general, we optimize the function f : R → R with respect to parameter θ

f(θ) = E[F (θ,X)]

where F : Rd ×Rm → R, θ can be considered as a parameter vector, while d,m are the dimension of the
parameter and training examples (resp.). In the above problem, F =

∑C
i=1 1y=i log fi(x,w). We denote

Xk,m,n : Ω → S be iid random variables which satisfy E [F (θ,X1,1,1)]
2 ≤ ∞ where Ω be a probability

space and S be a measurable space . And f be the function such that f(θ) = E [F (θ,X1,1,1)] Let us
denote M = {θ = arg inf f} the set of minima of f .

Assumption. � M is locally smooth ( there exists an open set U ⊆ Rdsuch that M∩U is a non-empty
Ψ−dimensional C1−submanifold of Rd).

� f is locally three times continous differentiable on the local set of M. And the Hessian matrix of f
is maximally non degenerate. (rank Hess (f)(θ) = d−Ψ = codim(M ∩ U))

Algorithm. Initialization: The initial data was sample from the bounded open set A ⊆ Rd that
contains at least one element in local set of M. Denote by θk,M,r

0 : Ω→ Rd indicates k-th sample in the
sampling set of size K, mini-batch size M , and parameter r > 0 involving to learning parameter. The
initial data is uniformly distributed on A. i.i.d and independent from Xk,m,n.
Weights update: We compute independent solutions to SGD in the way

θk,M,r
n = θk,M,r

n−1 −
r

nρM

[
m∑
i=1

∇θF (θk,M,r
n−1 , Xk,n,m)

]

Mini-batch approximation: ([2]) FK,M,n : Rd × Ω→ R is approximated as

FK,M,n(θ, w) =
1

M

M∑
i=1

F (θ,X1,n+1,m(w))
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After that, we identify the value that minimizes FK,M,n in the sense that we compute a random variable
θK,M,M,r
n : Ω→ Rd which satisfies that

M∑
m=1

F
(
θK,M,M,r
n , X1,n+1,m

)
= min
k∈[K]

[
M∑
m=1

F
(
θk,M,r
n , X1,n+1,m

)]

Theorem 1. [1]After running the above algorithm with p ∈ (2/3; 1). There exist τ, c > 0 , κ ∈ (0, 1)
such that for every n, k,M,M, r ∈ (0, τ) , ε ∈ (0, 1) we get

P
(

Distance betweenf(θk,M,M,r
n ) and minima bigger than ε

)
= P

(
f(θk,M,M,r

n )− inf
θ
f(θ) ≥ ε

)
≤ cK

ε2M
+

[
κ+ c

(
1

ε2nρ
+
n1−p√
M

)]K
The conditions we used in this algorithm are satisfied by a four-parameter affine-linear network with

a linear activation function and the case of a two-parameter network with the ReLU activation function.
[1]

2.2 Using decomposition of objective function

The next problem is finding the optimum solution on the convex set C

min
x∈C

f(x) = min
x∈C
{g(x)− h(x)}

Assumption. � f is bounded below C

� h is continuous and convex

� g is continuous differentiable and Mg smooth

Algorithm 1: Subgradient-type method.

Initialization. Choose x0 ∈
∫

(C) , level set of x0 is in C.
for each round k = 1, 2, · · · , T do

Update: xk+1 = xk − α(∇g(xk)− uk) where uk is chosen randomly from ∂h(xk) and learning
rate α ∈ [0, 1/Mg].

end

Theorem 2. [4] f(xk) is strictly decreasing and converges. The limit point of xk is also a critical point
of f . Moreover, for all k,

Avg
(
‖∇f(xk)‖22

)
≤ 2(f(x0)− f(x∗))

(k + 1)

We now turn to a more general class of optimization problems of the form

min
x∈Rd

f(x) = min
x∈Rd

g(x)− h(x) + ϕ(x)

Assumption. � f is bounded below Rd.

� h is continuous and convex.

� g is continuous differentiable and Mg−smooth.

� ϕ is proper, convex and lower semi-continuous.
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Algorithm 2: Proximal-type algorithm.

Initialization. Choose x0 ∈ dom(f) and learning rate α ∈ [0, 1/Mg].
for each round k = 1, 2, · · · , T do

Update: xk+1 = prox1/αϕ(xk − α(∇g(xk)− uk)) where uk is chosen randomly from ∂h(xk)
end

Here the notion proxλf (v) = arg minx

(
f(x) + 1

2λ ‖x− v‖
2
2

)
Theorem 3. [4] f(xk) is strictly decreasing and converges. The limit point of xk is also a critical point
of f . Moreover, for all k,

Avg
(
‖∇xk − xk−1‖22

)
≤ 2α(f(x0)− f(x∗))

α(k + 1)

In 2 algorithms we introduced above, the objective may be non convex or non smooth. But the
problem is how we could decompose the objective function into components.

2.3 Using extrapolation

Problem
min
x∈Rd

f(x) = min
x∈Rd

E [f (x, ξ)]

Assumption. � f(x) is L−smooth, that means

‖∇f(u)−∇f(v)‖ ≤ L ‖u− v‖

� There exist ∆ such that f(x)− f(x∗) ≤ ∆ for all x ∈ Rd where x∗ be the global minimum of f(x)

� (Bounded variance)
E
[
‖∇F (x, ξ)−∇f(x)‖2

]
≤ G2, ∀x, ξ

Algorithm 3: Mini batch stochastic gradient descent with extrapolation (Mini-batch SGDE).

Initialization z0 = x0 and g0 =
1

m

∑m
i=1∇f(x0, ξi,0)

for each round t = 1, 2, · · · , T do
xt = zt−1 − ηgt−1
gt =

1

m

∑m
i=1∇f(xt, ξi,t)

zt = zt−1 − ηgt
end

Theorem 4. [6] Chosing the learning rate η ≤ 1
12L and

min
t∈{1,··· ,T}

E
[
‖∇f(xt)‖2

]
≤ 3LηG2

2T
+

8(f(x0)− f(x∗))

ηT
+

72G2

m
− 1

η2T

T−1∑
0

E
[
‖xt+1 − xt‖2

]
Assumption. � f(x) is L−smooth.

� There exist ∆ such that f(x)− f(x∗) ≤ ∆ for all x ∈ Rd where x∗ be the global minimum of f(x).

� f(x, ξ) is differentiable.

� (Bounded variance) E
[
‖∇F (x, ξ)−∇f(x)‖2

]
≤ G2, ∀x, ξ

4



Algorithm 4: Stagewise SGDE

Algorithm StagewiseSGDE()

1 Initialization. x0 = x0
2 for s = 1, · · · , S do

fs(x) = f(x) + 1
2γ

∥∥x− xs−1∥∥2
xs= SGDE(xs−1, fs, ηs, Ts)

end
3 return xτ where τ is chosen from 1, · · · , S with probability P(τ = i) = wi∑s

j=1 ws

Procedure SGDE(x0, f, η, T)
1 Initialization. z0 = x0; g0 = ∇f(x0, ξ0)
2 for each round t = 1, 2, · · · , T do

xt = zt−1 − ηgt−1
gt = ∇f(xt, ξt)
zt = zt−1 − ηgt

end

3 return x̂t = 1
T

∑T
t=1 xt

Theorem 5. [6] After running Stagewise SGDE with γ = 1/4L;ws = sα (α > 1) and choosing the
learning parameter and the number of iteration at s−stage as follow: ηs = cγ

3s ≤
1
2L

γ
3 and Ts = 36s

c , we
got the estimation:

E
[
‖∇f(xτ )‖2

]
≤ 20∆(α+ 1)

γ(S + 1)
+

480G2c(α+ 1)

S + 1
−

60
∑S+1
s=1 wsDTs

γ
∑S+1
s=1 ws

where DTs
=

1

16Tsηs

∑Ts

t=1 ‖xt − xt−1‖
2
. If we expect E

[
‖∇f(xτ )‖2

]
≤ ε2, the number of stage should be

O(1/ε2).
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