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Challenges in fererated learning

Massively distributed. The number of mobile device owners is
massively bigger than average of the number of training samples on
each device.

Unbalanced. Some users produce significantly more data than others.

Non-IID. The data generated by each user are quite different.
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Figure. Top-1 validation accuracy for IMAGE CLASSIFICATION over the
CIFAR-10 dataset.

Hoang Trung Hieu Non-convex optimization of Federated Learning on non-iid data 4 / 22



Problem description

Let us consider the C−class classification problem.
Let f : X → S = {z |

∑C
i=1 zi = 1, zi ≥ 0 ∀i ∈ [C ]} denote the prediction

function and fi predicts the probability that the sample belongs to the
i−th class.

The learning problem is to solve the following optimization problem:

min
w

L(w) = min
w

Ex ,y∼p

[
C∑
i=1

1y=i log fi (x ,w)

]

= min
w

C∑
i=1

p(y = i)Ex |y=i [log fi (x ,w)]
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Weight updates at centralized setting:

w
(c)
t = w

(c)
t−1 − η

C∑
i=1

p(y = i)∇wEx |y=i [log fi (x ,w
(c)
t−1)]

Weight updates at the k−th client

w
(k)
t = w

(k)
t−1 − η

C∑
i=1

p(k)(y = i)∇wEx |y=i [log fi (x ,w
(k)
t−1)]

The m−th synchronization (assume synchronization is conducted every T
steps)

w
(f )
mT =

K∑
k=1

n(k)∑K
k=1 n

(k)
w

(k)
mT

n(k) denote the amount of data and p(k) denote the data distribution on
client k .
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Figure. Ilustration of the weight divergence for federated learning
with-IID and non-IID data.
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Convex optimization of FedAvg on Non-IID Data (X.Li,
K.Huang, W.Yang, S.Wang and Z.Zhang, 2020)

Assumptions

L− Lipschitz gradient:‖∇fi (u)−∇fi (v)‖ ≤ L ‖u − v‖
µ− strongly convex: fi (u) ≥ fi (v) + (u − v)T∇fi (v) + µ

2‖u − v‖2

Bounded variance:

Eξk∼Di

[
‖∇F (w , ξk)−∇fk(w)‖2

]
≤ σ2, ∀k ,w

Bounded gradient:

Eξk∼Di

[
‖∇F (w , ξk)‖2

]
≤ G 2, ∀k ,w
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Main aim : Give an analysis whether it is possible to give convergence
guarantees (non-convex) in case the data over each devices is non-iid.
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Non-convex optimization on gradient-based methods

Ideal 1: Splitting the loss function into convex terms and non-convex
terms.

min
x∈C

f (x) = min
x∈C
{g(x)− h(x)}

Assumptions

f is bounded below C

h is continuous and convex

g is continuous differentiable and Mg smooth
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Algorithm 1: Subgradient-type method.

Initialization. Choose x0 ∈
∫

(C ) , level set of x0 is in C .
for each round k = 1, 2, · · · ,T do

Update: xk+1 = xk − α(∇g(xk)− uk) where uk is chosen randomly
from ∂h(xk) and learning rate α ∈ [0, 1/Mg ].

end

Theorem

f (xk) is strictly decreasing and converges. The limit point of xk is also a
critical point of f . Moreover, for all k,

Avg
(
‖∇f (xk)‖22

)
≤ 2(f (x0)− f (x∗))

(k + 1)
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Non-convex optimization on gradient-based methods

Ideal 2: Using local smoothness and maximal nondegeneracy

f (θ) = E[F (θ,X )]

Assumptions

M is locally smooth ( there exists an open set U ⊆ Rdsuch that
M ∩ U is a non-empty Ψ−dimensional C 1−submanifold of Rd).

f is locally three times continous differentiable on the local set of M.
And the Hessian matrix of f is maximally non degenerate.
(rank Hess (f)(θ) = d −Ψ = codim(M ∩ U))
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Algorithm. Initialization: The initial data was sample from the bounded
open set A ⊆ Rd that contains at least one element in local set of M.

Denote by θk,M,r
0 : Ω→ Rd indicates k-th sample in the sampling set of

size K , mini-batch size M, and parameter r > 0 involving to learning
parameter. The initial data is uniformly distributed on A. i.i.d and

independent from Xk,m,n.
Weights update: We compute independent solutions to SGD in the way

θk,M,r
n = θk,M,r

n−1 −
r

nρM

[
m∑
i=1

∇θF (θk,M,r
n−1 ,Xk,n,m)

]
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Mini-batch approximation: FK ,M,n : Rd × Ω→ R is approximated as

FK ,M,n(θ,w) =
1

M

M∑
i=1

F (θ,X1,n+1,m(w))

After that, we identify the value that minimizes FK ,M,n in the sense that
we compute a random variable θK ,M,M,r

n : Ω→ Rd which satisfies that

M∑
m=1

F
(
θK ,M,M,r
n ,X1,n+1,m

)
= min

k∈[K ]

[
M∑

m=1

F
(
θk,M,r
n ,X1,n+1,m

)]
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Theorem

After running the above algorithm with p ∈ (2/3; 1). There exist τ, c > 0 ,
κ ∈ (0, 1) such that for every n, k ,M,M, r ∈ (0, τ) , ε ∈ (0, 1) we get

P
(

Distance betweenf (θk,M,M,r
n ) and minima bigger than ε

)
= P

(
f (θk,M,M,r

n )− inf
θ
f (θ) ≥ ε

)
≤ cK

ε2M
+

[
κ+ c

(
1

ε2nρ
+

n1−p√
M

)]K
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Non-convex optimization on gradient-based methods

Ideal 3: Using extrapolation
Problem

min
x∈Rd

f (x) = min
x∈Rd

E [f (x , ξ)]

Assumptions

f (x) is L−smooth.

There exist ∆ such that f (x)− f (x∗) ≤ ∆ for all x ∈ Rd where x∗ be
the global minimum of f (x).

f (x , ξ) is differentiable.

(Bounded variance) E
[
‖∇F (x , ξ)−∇f (x)‖2

]
≤ G 2, ∀x , ξ
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Algorithm 2: Stagewise SGDE

Algorithm StagewiseSGDE()

1 Initialization. x0 = x0
2 for s = 1, · · · ,S do

fs(x) = f (x) + 1
2γ

∥∥x − x s−1
∥∥2

x s= SGDE(x s−1, fs , ηs ,Ts)
end

3 return xτ where τ is chosen from 1, · · · ,S with probability
P(τ = i) = wi∑s

j=1 ws

Procedure SGDE(x0, f , η,T)

1 Initialization. z0 = x0; g0 = ∇f (x0, ξ0)
2 for each round t = 1, 2, · · · ,T do

xt = zt−1 − ηgt−1
gt = ∇f (xt , ξt)
zt = zt−1 − ηgt

end

3 return x̂t = 1
T

∑T
t=1 xt
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Theorem

After running Stagewise SGDE with γ = 1/4L;ws = sα (α > 1) and
choosing the learning parameter and the number of iteration at s−stage as
follow: ηs = cγ

3s ≤
1
2L

γ
3 and Ts = 36s

c , we got the estimation:

E
[
‖∇f (xτ )‖2

]
≤ 20∆(α + 1)

γ(S + 1)
+

480G 2c(α + 1)

S + 1
−

60
∑S+1

s=1 wsDTs

γ
∑S+1

s=1 ws

where DTs =
1

16Tsηs

∑Ts
t=1 ‖xt − xt−1‖2. If we expect

E
[
‖∇f (xτ )‖2

]
≤ ε2, the number of stage should be O(1/ε2).
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Idea
Traditional loss function:

L(w) =
1

K

K∑
i=1

fi (w)

New loss function:

L(w) =
1

K

K∑
i=1

min
θi∈Rn

{fi (θi ) +
λ

2
‖θi − w‖2}
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Algorithm 3: Ongoing algorithms

Server executes: Initialization w0 ;
for each round t = 1, 2, · · · do

for each client k ∈ St do
wk
t+1 ← ClientUpdate(k ,wt);

end

wt+1 ←
∑K

k=1
nk
n w

k
t+1;

end
ClientUpdate:
for i = 1, · · · ,N do

w t
i ,0 = wt

for r = 1, · · · ,R do

θ̂(w t
i ,r ) = proxfi/λ(w t

i ,r )

w t
i ,r+1 ← wi ,r − ηλ(w t

i ,t − θ̂(w t
i ,r ))

end

end
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THANK YOU FOR YOUR ATTENTION!
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