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Introduction

In order to prevent catastrophic failure of a system and minimize the costs of repair, mainte-
nance polices are arranged for systems that are subject to deterioration. In many cases, it is not
known if an object is deteriorating or not without inspection, which is organized aiming for
early detection of deterioration. However, performing a large number of inspections could be
costly and unnecessary. Therefore, statistical modelling and inference techniques are used in
order to find appropriate maintenance policies.

Markov chain based-models are powerful tools for simulating degradation and optimizing
maintenance policies [9]. It is has been significantly used in the medical field to model disease
progression and optimize screening, the theory of periodic screening was introduced by [10]
and later extended by many researchers [7, 8]. Markov chain models are also used in optimiz-
ing maintenance programs in the wind industry [2] and in transportation e.g. modelling the
deterioration of highway infrastructures[3], and bridge management system [4].

In probabilistic terms, Markov chain based-models describe the dynamic behaviour of a
system over time, where the states of the system (the condition) describe the level of accumu-
lated damage and the transition probability matrix describes the dynamics of the deterioration.
The main assumption in a Markov chain model is that the information of the current state in
the process is sufficient to describe the future probabilistic behaviour of the process.

In this modeling project, we present a continuous-time Markov chain as a simplified prob-
abilistic model to deal with accumulated damage that can be described by a discrete number of
states. We assume that we have six states of deterioration, and we aim to provide a cost-optimal
maintenance strategy. The model can be used in many application, e.g. disease progressions
such as cancer, insurance claims and cost-optimal inspection policies.

Model

Consider a continuous-time Markov chain (Xt)t≥0 in a space I consisting of six states D1,D2,D3,

D4,D5 and D6 describing the level of damage, where D1 is the damage-free state, D2, . . . ,D5
describe the level of damage and D6 is the symptomatic state where the degradation is exposed
by showing symptoms. Suppose that the propagation between the states is governed by an
exponential waiting time in each state. Suppose that the progression starts from the damage-
free state D1 and progresses into the next states. We chose to use five states to mimic cancer
progression models, where D1 can be thought of as the disease-free state and D2, . . . ,D5 are
the cancer stages at diagnosis I-IV [1]. The aim of screening is to detect the damage as early
as possible in hopes of improving survival.
Let us start laying the foundation of the model, let Yi be the waiting time at state Di before
deteriorating to the next state, and suppose that Yi ∼ exp(λi) for i = 1,2, . . . ,5.

D1 D2 D3 D4 D5 D6

Furthermore, suppose that an inspection program is organized starting from τ0 = 0 and τi =

τ1 +(i−1)∆, where τi is the age of an item at the ith inspection, and ∆ is the inter-inspection
time. We assume that the inspections may have a false positive rate, which is the probability of
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falsely detecting deterioration, i.e. the item is in the damage-free state D1 but the inspections
falsely show that it is in a deteriorating state. Also, we assume perfect inspection sensitivity,
which means inspections will detect deterioration with probability 1. The aim is to derive the
cost-optimal periodic inspection strategy.

The expected total cost E(TC(τ1,∆)) in this setup is divided into four parts:

• The expected cost of repair screened items E(CR(τ j,∆)).

• The expected cost of repair symptomatic cases E(CS(τ j,∆)).

• The expected cost of inspections E(CI(τ j,∆)).

• The expected cost associated with identifying false positives E(CFP(τ j,∆)).

In order to calculate the expected cost of repair, we need to derive the distribution of degra-
dation at τ j for j = 1,2, . . . ,K, denoted by Xτ j , where K is the total number of inspections in

an observation period of length T , that is given by K =

⌈
T − τ1

∆

⌉
if τ1 ≤ T and 0 otherwise.

The density of the convolution of waiting times Yi is straightforward to compute [5], and given
for λi 6= λ j:

fY1+Y2+···+Yi(y) =

[
i

∏
k=1

λk

]
i

∑
j=1

e−λ jy

i

∏
k 6= j
k=1

(λk−λ j)

, y > 0, i≥ 1.

In case there are identical parameters, the distribution of the sum of the random variables
Y1,Y2, . . . ,Yr was established by H. Jasiulewicz and W. Kordecki [6] as follows

fY1+···+Yr(t)=
n

∑
i=1

λ
ki
i e−tλi

ki

∑
j=1

(−1)ki− j

( j−1)!
t j−1× ∑

n1+···+nn=ki− j
ni=0

∏
l=1
l 6=i

(
kl +nl−1

nl

)
λ

kl
l

(λl−λi)kl+nl
1t>0,

where λ1, . . . ,λn are distinct parameters and ki denote the number of components with the same
parameter λi.

In this report, we will assume that the first scenario where all parameters are different. As a
first step, we will find an cost optimal inspection program assuming that when a deterioration
is detected, a repair is performed and the item leaves the chain (i.e. a repaired item will not be
inspected again). In other words, we will minimize the expected costs for a single cycle, which
lasts from the disease free state till repair.

Formulas for the probabilities

Denote by QYi(t) =
∫

∞

t
fYi(x)dx is the survivor function of the waiting time Yi.
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Proposition 1. The distribution of the degradation at the first inspection Xτ1 is given by:

P(Xτ1 = Di) =



e−λ1 τ1 i = 1

i−1

∏
k=1

λk

i

∑
k=2

e−λkτ1− e−λ1τ1

i

∏
l=1
l 6=k

(λl−λk)

i ∈ {2,3,4,5}

Proposition 2. The distribution of the degradation at the jth inspection Xτ j is given by:

P(Xτ j = Di) =



e−λ1 τ j i = 1

i−1

∏
k=1

λke−λ1τ j−1
i

∑
k=2

e−λk∆− e−λ1∆

i

∏
l 6=k
l=1

(λl−λk)

i ∈ {2,3,4,5}

Proposition 3. The probability of showing symptoms before the first inspection τ1, denoted by
I(τ1), is:

I(τ1) =
5

∏
i=1

λi

5

∑
j=1

1− e−λ jτ1

5

∏
k=1
k 6= j

λ j(λk−λ j)

Similarly, the probability of showing symptoms between the last inspection τK and the end
of the observation period T , denoted by I(τK+1), is:

I(τK+1) = e−λ1τK − e−λ1T .

Proposition 4. The probability of showing symptoms between τ j−1 and τ j for j = 2, . . . ,K ,
denoted by I(τ j), is:

I(τ j) =e−λ1τ j−1− e−λ1τ j +
4

∏
i=1

λi

4

∑
k=2

e−λkτ j
(

e(λk−λ1)τ j − e(λk−λ1)τ j−1

)
λk

4

∏
l 6=k
l=1

(λl−λk)

+
5

∑
k=3

4

∏
i=1

λi

5

∏
l 6=k
l=2

(λl−λk)

e−λ2τ j
(

e(λ2−λ1)τ j − e(λ2−λ1)τ j−1

)
λ2−λ1

+
4

∏
i=1

λi

5

∑
k=3

e−λkτ j
(

e(λk−λ1)τ j − e(λk−λ1)τ j−1

)
(λ1−λk)

5

∏
l 6=k
l=2

(λl−λk)

Expected costs

Suppose that the cost of repair is an increasing function CR : I→ R+, where CR(i) is the cost
of repair at damage level Di for i = 1,2, . . . ,6, then the expected cost of repair of damage items
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which are detected at inspection τ j is:

E(CR(τ j,∆)) =
5

∑
i=1

CR(i) ·P(Xτ j = Di).

Denote by CS the cost of repair items which are detected by showing symptoms ( i.e.
reaching the state D6), then the expected cost of repair of cases showing symptoms between
τ j−1 and τ j is:

E(CS(τ j,∆)) =CR(6) · I(τ j).

The expected cost associated with identifying false positive is derived using: the probability
of being in the deterioration-free state at τ j, the false positive rate α and the cost of identifying
a single false positive CFP. Namely:

E(CFP(τ j,∆)) =CFP ·α ·P(Xτ j = D1).

In order to determine the expected cost of inspection, we assume that a repaired item will
not be inspected again. Then, the cost of inspection in such a single cycle follows from the
number of items participating in each inspection. Suppose that CI is the cost of inspection for
a single item, then the expected cost of the inspection occurring at τ j is:

E(CI(τ j,∆)) =CI ·Pτ j(S),

such that Pτ1(S) = 1− I(τ1) and Pτ j(S) is the probability of an item participating in inspection
τ j;

Pτ j(S) = Pτ1(S)−
j−1

∑
i=1

H(τi)−
j

∑
i=2

I(τi), for j = 2, . . . ,K,

where H(τi) = I(τi)+
i

∑
k=1

Pτk(S) is the probability of a deterioration getting detected in inspec-

tion τi.
Putting everything together, the expected total cost for a single cycle is a function of the first
inspection and the inter-inspection time and is given by:

E(TC(τ1,∆)) =
K+1

∑
j=1

E(CS(τ j,∆))+
K

∑
j=1

[
E(CR(τ j,∆))+E(CFP(τ j,∆))+E(CI(τ j,∆))

]
=

K+1

∑
j=1

Cs · I(τ j)+
K

∑
j=1

[
5

∑
i=1

CR(i) ·P(Xτ j = Di)+CFP ·α ·P(Xτ j = D1)+CI ·Pτ j(S)

]
.
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Simulation and results

Using the following parameterizations, we implement the model in the statistical software R.

Parameter and Value
Waiting times (in
years)

1/λ1 = 50, 1/λ2 = 3.3, 1/λ3 = 2.5, 1/λ4 = 2.2, 1/λ5 = 2

Costs of Repair CR(1) = 0, CR(2) = 17000, CR(3) = 18500, CR(4) = 19900, CR(5) =
21000

Other costs CFP = 550, CS = 26000, CI = 300
Observation period
(in years)

T = 100 .

False positive rate α = 0.05

Using the ggplot package in R, we ploted the following contour plots:

Figure 1: Contour plots for the total expected cost as a function of first inspections and inter-
inspection periods. The minimum is represented by the red dot.

Current work and aims

We are currently working on generalizing the model so that we allow recurrence. That is,
whenever an item is repaired, it goes back to the damage-free state immediately. In this sce-
nario, we are aiming to find a closed form of the expected costs, or derive a simple method to
give a compact upper bound of the expected costs. We also aim to release the perfect sensitiv-
ity assumption, that means that there will be a positive probability that the damage will not be
detected by an inspection. Another possible generalization is releasing the perfect repair as-
sumption, meaning that an item repaired at damage level Di will no longer immediately move
back to the disease free state D1, but will move to state D j where j < i. These generalizations
will render the model applicable in many scenarios.
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