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Introduction

Consider a continuous-time Markov chain (Xt)t≥0 in a space I
consisting of six states D1, . . . ,D6 describing the level of damage.

let Yi ∼ exp(λi ) for i = 1,2, . . . ,5 be the waiting time at state Di .

Assume that the inspection is periodic with an inter-inspection time
∆ and denote by τi = τ1 + (i −1)∆ the age at the i th inspection.

Assume that the inspections may have a false positive rate and
perfect sensitivity.

Assume that the damage can only be detected either by an inspection
or by showing symptoms (reaching state D6).

Within such a setup, our aim is to establish a cost-optimal inspection
program.

D1 D2 D3 D4 D5 D6
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Expected costs

In this setup, the expected total cost E (TC (τ1,∆)) can be divided into
four parts:

The expected cost of repair screened items E (CR(τ1,∆)).

The expected cost of repair symptomatic cases E (CS(τ1,∆)).

The expected cost of inspections E (CI (τ1,∆)).

The expected cost associated with identifying false positives
E (CFP(τ1,∆)).

Our assumptions are:

Suppose that the cost of repair is an increasing function Cr : I → R+.

Suppose that we have a constant false positive rate α and denote the
cost of identifying a single false positive CFP .

Denote by CI the cost of inspection for a single item.
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Distribution of Xτj on inspections

The first step is to determine the distribution of Xτj on each

inspection for j = 1, . . . ,K where K =

⌈
T − τ1

∆

⌉
.

The distribution of Xτj is computed using the convolution of waiting
times Yi and for distinct parameters (λk), that is [1] :

fY1+Y2+···+Yi
(y) =

[
i

∏
k=1

λk

]
i

∑
j=1

e−λjy

i

∏
k 6=j
k=1

(λk −λj)

, y > 0, i ≥ 1.

In case the λk ’s are not distinct, the distribution of the sum of waiting
times can also be computed [3]. We assume that λi 6= λj ∀i , j ∈ I .
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Distribution of Xτj on inspections II

Using the convolution of the waiting times, we derived the distribution of
the degradation at the j th inspection Xτj , where j ≥ 2, as:

P(Xτj = Di ) =



e−λ1 τj i = 1

i−1

∏
k=1

λke
−λ1τj−1

i

∑
k=2

e−λk∆− e−λ1∆

i

∏
l 6=k
l=1

(λl −λk)

i ∈ {2,3,4,5}

Then, the expected cost of repair of damaged items detected by inspection
is:

E (CR(τ1,∆)) =
5

∑
i=1

Cr (i) ·P(Xτj = Di )
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Expected repair cost of items with symptoms

The second part of the expected total costs comes from the repair of
symptomatic items i.e. items which reach D6. Hence:

The probability of showing symptoms before the first inspection τ1,
denoted by I (τ1), is:

I (τ1) =
5

∏
i=1

λi

5

∑
j=1

1− e−λjτ1

5

∏
k=1
k 6=j

λj(λk −λj)

The probability of showing symptoms between the last inspection τK

and the end of the observation period T , denoted by I (τK+1), is:

I (τK+1) = e−λ1τK − e−λ1T .
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Expected repair cost of items with symptoms II

The probability of showing symptoms between τi−1 and τi for
i = 2, . . . ,K denoted by I (τi ) is computed in a similar manner.

Using these probabilities, the expected cost of repair of items showing
symptoms between τj−1 and τj is:

E (CS(τ1,∆)) =
K+1

∑
j=1

Cr (6) · I (τj).

Note that this includes the costs of repair before the first inspection and
after the last inspection till the end of the observation period.

Tareq Aldirawi (VFU) December 2020 7 / 15



Expected cost of identifying false positive items

The expected cost of identifying false positive items is derived using:

The probability of being in the damage-free state at τj , denoted by
P(Xτj = D1).

The false positive rate α and the cost of identifying a single false
positive CFP .

The probability of an inspection to falsely detect damage when there is
none is simply α ·P(Xτj = D1). Hence, the expected cost is:

E (CFP(τ1,∆)) = CFP ·α ·P(Xτj = D1).
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Expected cost of inspections

We assume that a repaired item will not be inspected again.

Denote by Pτj (S) the probability of an item participating in inspection
τj , then Pτ1(S) = 1− I (τ1) and

Pτj (S) = Pτ1(S)−
j

∑
i=1

I (τi ) +
j

∑
i=1

6

∑
s=2

P(Xτi = Ds), for j = 2, . . . ,K ,

Therefore, the expected cost of the inspection occurring at τj is:

E (CI (τ1,∆)) = CI ·Pτj (S).
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Summing up

Putting everything together, the expected total cost for a single cycle is a
function of the first inspection τ1 and the inter-inspection time ∆ and is
given by:

E (TC (τ1,∆)) =
K+1

∑
j=1

E (CS(τ1,∆)) +
K

∑
j=1

[
E (CR(τ1,∆)) +E (CFP(τ1,∆))

+E (CI (τ1,∆))
]

=
K+1

∑
j=1

Cr (6) · I (τj) +
K

∑
j=1

[ 5

∑
i=1

Cr (i) ·P(Xτj = Di )

+CFP ·α ·P(Xτj = D1) +CI ·Pτj (S)
]
.

The expected total cost will be minimized using nonlinear minimization
(nlm) in order to find optimal τ1 and ∆.
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Simulation and results

Using the following parameterizations, we implement the model in the
statistical software R.

Parameter and Value

Waiting times (in
years)

1/λ1 = 50, 1/λ2 = 3.3, 1/λ3 = 2.5, 1/λ4 = 2.2, 1/λ5 = 2

Costs of Repair CR(1) = 0, CR(2) = 17000, CR(3) = 18500, CR(4) = 19900, CR(5) =
21000

Other costs CFP = 550, CS = 26000, CI = 300

Observation pe-
riod (in years)

T = 100 .

False positive rate α = 0.05
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Plot

Using the ggplot package in R, we ploted the following contour plot:

Figure: Contour plots for the total expected cost as a function of first inspections
and inter-inspection periods. The minimum is represented by the red dot.
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Current work and aims

We are currently working on generalizing the model so that we allow
recurrence. In this scenario, we are aiming to find a closed form of the
expected costs, or derive a simple method to give a compact upper
bound of the expected costs.

We also aim to release the perfect sensitivity and the perfect repair
assumptions.

These generalizations will render the model applicable in many
scenarios.
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