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When people attempt to predict the future scenarios, one needs to have a basic

idea of the past and present. It can be practically easy if we have a constant or a

simple smooth graph. But what about cases when this data we are working with is

highly non-linear? The answer is to find a linear structure, which can be considered as

a supporter or a base. However, depending on what we consider it to be a underpin for

our function, the prediction may be wrong. When we try to solve this we use signatures

of paths.

The goal of this project is to understand what this method is and its usages for

forecasting a chosen time-series, for example, financial data. In real life, the graph of

stock prices will be a non-smooth path, that is why when it comes to a rough path, we

consider the signature of it as a fundamental object, instead of models which cannot

fit the data or which cannot generalise it.

In the first semester, we focused on the basics, such as what is a signature and how

does it work on simple smooth deterministic functions.

Definition 0.1. A path in a Euclidean space, which we will denote by X, is a contin-

uous mapping from an interval [a, b] to Rm. We will use Xt for a path parameterized

by a point t ∈ [a, b].

Xt = {X1
t , X

2
t . . . , X

m
t }, (1)

we call these coordinate paths.

Definition 0.2. Let us assume Xt : [a, b] 7→ Rm, then the signature of the path Xt is

an infinite series of the iterated integrals

S(X)a,b = (1, S(X)1a,b, S(X)2a,b . . . , S(X)ma,b, S(X)11a,b, . . .). (2)

To be precise, we define them as:

S(X)ia,t =

∫
a<s<b

dX i
s = X i

t −X i
0 (3)



for any i ∈ {1, . . . ,m}, Xt = {X1
t , X

2
t . . . , X

m
t }, additionally

S(X)i,ja,t =

∫
a<s<b

S(X)ia,s dX
j
s =

∫
a<r<s<t

dX i
rdX

j
s (4)

for any i, j ∈ {1, . . . ,m}.

Furthermore, we will continue recursively, for any positive integer n, we consider the

collection of indices (multi-indices) i1, i2, . . . , in ∈ {1, 2 . . . ,m} and define the signature

as

S(X)i1,...,ina,t =

∫
a<tm<t

. . .

∫
a<t1<t2

dX i1
t1 . . . dX

in
tn (5)

This time we only consider R2 and R.

Remark. If we have the paths X : [a, b] 7→ R, Y : [a, b] 7→ R and a function f : R 7→ R,

then ∫ b

a

f(Xt) dXt =

∫ b

a

f(Xt)Ẋt dt, (6)∫ b

a

Yt dXt =

∫ b

a

YtẊt dt (7)

Since we now know how we compute these types of integrals, let us see some exam-

ples on computing signatures.

Example 0.1. Xt = {X1
t } = {t3}, where t ∈ [a, b] = [0, 1].

S(X)10,1 =

∫
0<t<1

dX1
t =

∫ 1

0

3t2dt = X1
1 −X1

0 = 13 − 03 = 1

S(X)1,10,1 =

∫
0<t1<t2<1

dX1
t1
dX1

t2
=

∫ 1

0

(∫ t2

0

3t21dt1

)
dt2 = 1/4

So we will compute for {1, 11, 111, . . .}.

Example 0.2. Let us define Xt = {X1
t , X

2
t } = {5 + t2, (t2 + 1)2}, where t ∈ [a, b] =

[1, 5]. So we know dXt = {dX1
t , dX

2
t } = {2tdt, 4t(t2+1)dt}. If we compute the iterated

integrals we get:

S(X)11,5 =

∫
1<t<5

dX1
t =

∫ 5

1

2tdt = X1
5 −X1

1 = 30− 6 = 24



S(X)21,5 =

∫
1<t<5

dX2
t =

∫ 5

1

4t(t2 + 1)dt = X2
5 −X2

1 = 676− 4 = 672

S(X)1,11,5 =

∫
1<t1<t2<5

dX1
t1
dX1

t2
=

∫ 5

1

(∫ t2

1

2t1dt1

)
2t2dt2 =

∫ 5

1

( t22 − 1)2t2dt2 = 288

S(X)1,21,5 =

∫
1<t1<t2<5

dX1
t1
dX2

t2
=

∫ 5

1

(∫ t2

1

2t1dt1

)
4t2(t

2
2+1)dt2 =

∫ 5

1

( t22−1)4t2(t
2
2+1)dt2

and so on, since the superscripts run along the set of all multi-indexes, we will have an

infinite combination{1, 2, 11, 12, 21, 22, 111, 112, 121 . . .}.

Eventually, we would like to deal with rough non-smooth functions, like the Geo-

metric Brownian motion (following picture), which is significant when it comes to stock

prices.
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