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P-adic norm

Definition (p-adic norm)

Let p be any prime number. For any nonzero integer a let ordpa be the
highest power of p which divides a. Now for any nonzero rational number
x = a/b let ordpx = ordpa− ordpb. It is easy to see that this is
well-defined.
Now the map | |p on Q is called p-adic norm and is defined as follows:

|x |p =

{ 1
pordpx

, if x ̸= 0

0, if x = 0.
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P-adic norm

Proposition

The map | |p is a norm on Q, furthermore, it satisfies the following
stronger version of the triangle inequality, meaning that the p-adic norm
is a non-Archimedean norm:

∀x , y ∈ Q : |x + y |p ≤ max(|x |p, |y |p).

Theorem (Ostrowski)

Every nontrivial norm on Q is equivalent to | |p for some prime p or for
p = ∞.
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Completion of Q

Similarly as we get the real numbers from the rational numbers, we will
take the Cauchy secquences in Q according to | |p and define the
equivalence classes:

{ai} ∼ {bi} ⇔ |ai − bi | → 0.

This set of equivalence classes will be denoted Qp.

Proposition

The p-adic norm extends to Qp.

Definition

For a, b ∈ Qp a ≡ b (mod pi ) if and only if |a− b|p ≤ p−i .
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Completion of Q

Theorem

Every a ∈ Qp, given that |a|p ≤ 1, has exactly one representative Cauchy
sequence {ai}, ai ∈ Z that:

0 ≤ ai < pi for i = 1, 2, 3...

ai ≡ ai+1 (mod pi ) for i = 1, 2, 3...

Corollary

Every a ∈ Qp can be expressed as:

a = b0p
−i + ...+bi−1p

−1+bi +bi+1p+ ..., ∀j ∈ N : bj ∈ {0, 1, ..., p−1}

for some i ∈ N.
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Completion of Q

Definition

Let Zp = {x ∈ Qp : |x |p ≤ 1}, we call Zp the set of p-adic integers. It
can be checked that Zp is a subring of Qp.

Remark

Instead of the set {0, ..., p − 1} we can take any set S = {a0, ..., ap−1} of
p-adic integers that has the property ai ≡ i (mod p) for i = 0, ..., p − 1,
and then there is also a unique representative

∑∞
j=−i bjp

j , bj ∈ S of any
equivalence class in Qp.

András Földesi P-adic numbers and p-adic analysis



Completion of Q

Theorem (Hensel’s lemma)

Let p(x) = anx
n + ...+ a0 be a polynomial with coefficients in Zp[x ], and

let p′(x) = nanx
n−1 + ...+ a1 be its formal derivative. Now if there exists

b0 ∈ Zp so that p(b0) ≡ 0 (mod p), and p′(b0) ̸≡ 0 (mod p), then there
exists a unique b ∈ Zp such that p(b) = 0 and b ≡ b0 (mod p).

András Földesi P-adic numbers and p-adic analysis



The algebraic closure of Qp

Proposition

Let L be a finite field extension of Qp then there is at most one norm
that extends the p-adic norm.

Theorem

Define the following map on Qp:

|x | = |Nx |1/np ,

where Nx is the constant term and n is the degree of the minimal
polynomial of x over Qp, this is a non-Archimedean norm extending the
p-adic norm defined on Qp.
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The algebraic closure of Qp

Definition

Let L be a finite extension of Qp of order n. For x ∈ L define

ordp(x) = − logp |x |p = −1

n
|Nx |.

This agrees with the definition of ordp on Qp.

Definition

Now {ordp(x) : x ∈ L} ⊂ 1
nZ, so there exists

e|n : {ordp(x) : x ∈ L} = 1
eZ, we will call e the index of ramification of L

over Qp.
The extension L is called unramified if the index of ramification is 1 and
totally ramified if it is n.
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The algebraic closure of Qp

Proposition

Let L be a finite extension of Qp. Let

A = {x ∈ L : |x |p ≤ 1}

M = {x ∈ L : |x |p < 1}

. Then A is a local ring, which is the integral closure of Qp in L with the
unique maximal ideal M. Furthermore A/M is a finite extension of Fp.

Proposition

Using the notations from the preceding proposition, let f be the the
degree of the extension A/M over Fp, then n = ef , where e is the index
of ramification of L over Qp.
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The algebraic closure of Qp

Proposition

If L is a totally ramified extension of Qp and for α ∈ L ordp(α) = 1/e,
then α is the root of an Eisenstein polynomial :

xe + ae−1x
e−1 + ...+ a0 = 0, ai ∈ Zp,

where ai ≡ 0 (mod p) for all i , and a0 ̸≡ (mod p2). Conversely, if α is
the root of an Eisenstein polynomial over Qp then Qp(α) is totally
ramified over Qp of degree e.

Proposition

There is exactly one unramified extension Lunramf of Qp of degree f, that
can be obtained by adjoining a primitive (pf − 1)th root of 1. If L is an
extension of Qp of degree n, index of ramification e and residue field
degree f , then L = Lunramf (α), where α satisfies an Eisenstein polynomial
with coefficients in Lunramf .
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The algebraic closure of Qp

Corollary

If L is a finite extension of Qp of degree n, index of ramification e and
residue field of degree f , and if π is chosen so that ordp(π) = 1/e, then
every α ∈ L can be written uniquely in the form:

∞∑
i=m

aiπ
i ,

where m = eordp(α) and each ai satisfies a
pf

i = ai (the elements of L
satisfying this are called Teichmüller representatives).
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Completeness of Qp

Theorem

The field Qp is not complete.

Definition

Take the equivalence classes of Cauchy sequences in Qp, denote this set
as Ω.

Theorem

Ω is algebraically closed.
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P-adic power series

Let f (x) be a p-adic power series:

f (x) =
∞∑
n=0

anx
n, an ∈ Ω,

and this will converge on the set {x ∈ Ω : |x |p < r}, where

r =
1

lim sup |an|1/np

.

Proposition

A sum
∑∞

n=0 an, an ∈ Ω converges if and only if limn→∞ |an| → 0.

Corollary

If f (x) =
∑∞

n=0 anx
n, an ∈ Ω then f (x) is either converges or diverges on

the whole {x ∈ Ω : |x |p = r} set, where r is the radius of convergence.
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P-adic power series

Definition

Let Da(r
−) = {x ∈ Ω : |x − a|p < r} be the open disk around a with

radius r .
Let Da(r) = {x ∈ Ω : |x − a|p ≤ r} be the closed disk around a with
radius r .
It is important that these sets are both open and close in a topological
sense, the terms ”open” and ”closed” only refer to the analogy with the
Archimedean case.
In the followings D(r) = D0(r), D(r−) = D0(r

−).
Let R be a ring, then R[[x ]] is the ring of formal power series with
coefficients in R.
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P-adic power series

Lemma

All f (x) ∈ Zp[[x ]] converges in D(1−).

Lemma

All f (x) ∈ Ω[[x ]], which converges on a disk D = D(r−) or D(r) is
continuous on D.
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P-adic power series

The p-adic logarithm:

logp(1 + x) :=
∞∑
n=1

(−1)n+1

n
xn, D(1−).

The p-adic exponential :

expp(x) :=
∞∑
n=1

1

n!
xn, D(p−1/(p−1)).

The p-adic binomial expansion:

Ba,p(x) = (1 + x)a :=
∞∑
n=1

a(a− 1)...(a− n + 1)

n!
xn, D(p−1/(p−1)).
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P-adic power series

Proposition

If a ∈ Zp then Ba,p ∈ Zp[[x ]], and so it converges on D(1−).

Proposition

The functions logp and expp give mutually inverse isomorphisms between

the multiplicative group of D1(p
−1/(p−1)) and the additive group of

D0(p
−1/(p−1)).

Proposition

There exists a unique extension f of logp to Ω× such that:

f (xy) = f (x) + f (y) for all x , y ∈ Ω×

f (p) = 0.

We will use the notation logp for this f from now on.
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Newton polygons

Definition

Let f (x) = 1 +
∑n

i=1 aix
n ∈ q + xΩ[x ] be a polynomial of degree n and

constant term 1. Then the Newton polygon of f is the convex hull of the
set {(0, 0)}

⋃
{(i , ordpai ) : i = 1, ..., n}, i.e. the highest polygonal line

joining (0, 0) and (n, ordpan), that passes on or below all of the points in
this set.
The vertices of the Newton polygon are the points (i , ordpai ), where the
slope changes. If e segment joins the points (i ,m) and (i ′,m′), then its
slope is (m′ −m)/(i ′ − i), and the length of the slope is i ′ − i .

Lemma

Let f (x) = (1− x/α1)...(1− x/αn) ∈ Ω[x ], where αi , i = 1, ..., n are the
roots of f . Let λi = ordp1/αi . If λ is a slope of the Newton polygon of f
with length l , then precisely l of the λi are equal to λ.
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Newton polygons

Definition

Let f (x) = 1 +
∑∞

i=1 aix
i ∈ 1 + xΩ[[x ]] be a power series. Let

fn(x) = 1 +
∑n

i=1 aix
i ∈ 1 + xΩ[x ] be the nth partial sum of f (x). The

Newton polygon of f is the limit of the Newton polygons of the fn.

Lemma

Let b be the least upper bound of all slopes of the Newton polygon of
f ∈ 1 + xΩ[[x ]], then the radius of convergence of f is pb (if b = ∞ then
f converges everywhere on Ω).
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Newton polygons

p-adic Weierstrass Preparation Theorem

Let f ∈ 1 + xΩ[[x ]]. Suppose that f converges on D(pλ). Let N be the
horizontal length of all segments of Newton polygon having slope less
than or equal to λ, if that is finite. Otherwise, the Newton polygon has
last slope λ, then let N be the greatest i for which (i , ordpai ) lies on the
Newton polygon (it exists due to the convergence on D(pλ)). Then there
exists h(x) = 1 +

∑n
i=1 bix

i ∈ 1 + xΩ[x ] and g(x) ∈ 1 + xΩ[[x ]], such
that g converges and is nonzero on D(pλ) and h(x) = f (x)g(x) on
D(pλ). Furthermore h is uniquely determined by these properties, and its
Newton polygon coincides with the Newton polygon of f until
(N, ordpaN).
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