

P-adic numbers and p-adic analysis

András Földesi

January, 2026

Definition (p-adic norm)

Let p be any prime number. For any nonzero integer a let $\text{ord}_p a$ be the highest power of p which divides a . Now for any nonzero rational number $x = a/b$ let $\text{ord}_p x = \text{ord}_p a - \text{ord}_p b$. It is easy to see that this is well-defined.

Now the map $| \ |_p$ on \mathbb{Q} is called p-adic norm and is defined as follows:

$$|x|_p = \begin{cases} \frac{1}{p^{\text{ord}_p x}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0. \end{cases}$$

Proposition

The map $| \cdot |_p$ is a norm on \mathbb{Q} , furthermore, it satisfies the following stronger version of the triangle inequality, meaning that the p-adic norm is a non-Archimedean norm:

$$\forall x, y \in \mathbb{Q} : |x + y|_p \leq \max(|x|_p, |y|_p).$$

Theorem (Ostrowski)

Every nontrivial norm on \mathbb{Q} is equivalent to $| \cdot |_p$ for some prime p or for $p = \infty$.

Completion of \mathbb{Q}

Similarly as we get the real numbers from the rational numbers, we will take the Cauchy sequences in \mathbb{Q} according to $| \cdot |_p$ and define the equivalence classes:

$$\{a_i\} \sim \{b_i\} \Leftrightarrow |a_i - b_i| \rightarrow 0.$$

This set of equivalence classes will be denoted \mathbb{Q}_p .

Proposition

The p -adic norm extends to \mathbb{Q}_p .

Definition

For $a, b \in \mathbb{Q}_p$ $a \equiv b \pmod{p^i}$ if and only if $|a - b|_p \leq p^{-i}$.

Completion of \mathbb{Q}

Theorem

Every $a \in \mathbb{Q}_p$, given that $|a|_p \leq 1$, has exactly one representative Cauchy sequence $\{a_i\}$, $a_i \in \mathbb{Z}$ that:

- $0 \leq a_i < p_i$ for $i = 1, 2, 3, \dots$
- $a_i \equiv a_{i+1} \pmod{p^i}$ for $i = 1, 2, 3, \dots$

Corollary

Every $a \in \mathbb{Q}_p$ can be expressed as:

$$a = b_0 p^{-i} + \dots + b_{i-1} p^{-1} + b_i + b_{i+1} p + \dots, \quad \forall j \in \mathbb{N} : b_j \in \{0, 1, \dots, p-1\}$$

for some $i \in \mathbb{N}$.

Completion of \mathbb{Q}

Definition

Let $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\}$, we call \mathbb{Z}_p the set of p -adic integers. It can be checked that \mathbb{Z}_p is a subring of \mathbb{Q}_p .

Remark

Instead of the set $\{0, \dots, p-1\}$ we can take any set $S = \{a_0, \dots, a_{p-1}\}$ of p -adic integers that has the property $a_i \equiv i \pmod{p}$ for $i = 0, \dots, p-1$, and then there is also a unique representative $\sum_{j=-i}^{\infty} b_j p^j$, $b_j \in S$ of any equivalence class in \mathbb{Q}_p .

Theorem (Hensel's lemma)

Let $p(x) = a_n x^n + \dots + a_0$ be a polynomial with coefficients in $\mathbb{Z}_p[x]$, and let $p'(x) = n a_n x^{n-1} + \dots + a_1$ be its formal derivative. Now if there exists $b_0 \in \mathbb{Z}_p$ so that $p(b_0) \equiv 0 \pmod{p}$, and $p'(b_0) \not\equiv 0 \pmod{p}$, then there exists a unique $b \in \mathbb{Z}_p$ such that $p(b) = 0$ and $b \equiv b_0 \pmod{p}$.

The algebraic closure of \mathbb{Q}_p

Proposition

Let L be a finite field extension of \mathbb{Q}_p then there is at most one norm that extends the p -adic norm.

Theorem

Define the following map on $\overline{\mathbb{Q}_p}$:

$$|x| = |N_x|_p^{1/n},$$

where N_x is the constant term and n is the degree of the minimal polynomial of x over \mathbb{Q}_p , this is a non-Archimedean norm extending the p -adic norm defined on \mathbb{Q}_p .

The algebraic closure of \mathbb{Q}_p

Definition

Let L be a finite extension of \mathbb{Q}_p of order n . For $x \in L$ define

$$\text{ord}_p(x) = -\log_p |x|_p = -\frac{1}{n} |N_x|.$$

This agrees with the definition of ord_p on \mathbb{Q}_p .

Definition

Now $\{\text{ord}_p(x) : x \in L\} \subset \frac{1}{n}\mathbb{Z}$, so there exists $e|n : \{\text{ord}_p(x) : x \in L\} = \frac{1}{e}\mathbb{Z}$, we will call e the *index of ramification* of L over \mathbb{Q}_p .

The extension L is called *unramified* if the index of ramification is 1 and *totally ramified* if it is n .

The algebraic closure of \mathbb{Q}_p

Proposition

Let L be a finite extension of \mathbb{Q}_p . Let

$$A = \{x \in L : |x|_p \leq 1\}$$

$$M = \{x \in L : |x|_p < 1\}$$

. Then A is a local ring, which is the integral closure of \mathbb{Q}_p in L with the unique maximal ideal M . Furthermore A/M is a finite extension of \mathbb{F}_p .

Proposition

Using the notations from the preceding proposition, let f be the the degree of the extension A/M over \mathbb{F}_p , then $n = ef$, where e is the index of ramification of L over \mathbb{Q}_p .

The algebraic closure of \mathbb{Q}_p

Proposition

If L is a totally ramified extension of \mathbb{Q}_p and for $\alpha \in L$ $\text{ord}_p(\alpha) = 1/e$, then α is the root of an *Eisenstein polynomial*:

$$x^e + a_{e-1}x^{e-1} + \dots + a_0 = 0, a_i \in \mathbb{Z}_p,$$

where $a_i \equiv 0 \pmod{p}$ for all i , and $a_0 \not\equiv 0 \pmod{p^2}$. Conversely, if α is the root of an Eisenstein polynomial over \mathbb{Q}_p then $\mathbb{Q}_p(\alpha)$ is totally ramified over \mathbb{Q}_p of degree e .

Proposition

There is exactly one unramified extension L_f^{unram} of \mathbb{Q}_p of degree f , that can be obtained by adjoining a primitive $(p^f - 1)$ th root of 1. If L is an extension of \mathbb{Q}_p of degree n , index of ramification e and residue field degree f , then $L = L_f^{\text{unram}}(\alpha)$, where α satisfies an Eisenstein polynomial with coefficients in L_f^{unram} .

The algebraic closure of \mathbb{Q}_p

Corollary

If L is a finite extension of \mathbb{Q}_p of degree n , index of ramification e and residue field of degree f , and if π is chosen so that $\text{ord}_p(\pi) = 1/e$, then every $\alpha \in L$ can be written uniquely in the form:

$$\sum_{i=m}^{\infty} a_i \pi^i,$$

where $m = \text{eord}_p(\alpha)$ and each a_i satisfies $a_i^{p^f} = a_i$ (the elements of L satisfying this are called Teichmüller representatives).

Completeness of $\overline{\mathbb{Q}_p}$

Theorem

The field $\overline{\mathbb{Q}_p}$ is not complete.

Definition

Take the equivalence classes of Cauchy sequences in $\overline{\mathbb{Q}_p}$, denote this set as Ω .

Theorem

Ω is algebraically closed.

P-adic power series

Let $f(x)$ be a p-adic power series:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \Omega,$$

and this will converge on the set $\{x \in \Omega : |x|_p < r\}$, where

$$r = \frac{1}{\limsup |a_n|_p^{1/n}}.$$

Proposition

A sum $\sum_{n=0}^{\infty} a_n$, $a_n \in \Omega$ converges if and only if $\lim_{n \rightarrow \infty} |a_n| \rightarrow 0$.

Corollary

If $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $a_n \in \Omega$ then $f(x)$ is either converges or diverges on the whole $\{x \in \Omega : |x|_p = r\}$ set, where r is the radius of convergence.

Definition

Let $D_a(r^-) = \{x \in \Omega : |x - a|_p < r\}$ be the *open disk* around a with radius r .

Let $D_a(r) = \{x \in \Omega : |x - a|_p \leq r\}$ be the *closed disk* around a with radius r .

It is important that these sets are both open and close in a topological sense, the terms "open" and "closed" only refer to the analogy with the Archimedean case.

In the followings $D(r) = D_0(r)$, $D(r^-) = D_0(r^-)$.

Let R be a ring, then $R[[x]]$ is the ring of formal power series with coefficients in R .

Lemma

All $f(x) \in \mathbb{Z}_p[[x]]$ converges in $D(1^-)$.

Lemma

All $f(x) \in \Omega[[x]]$, which converges on a disk $D = D(r^-)$ or $D(r)$ is continuous on D .

P-adic power series

The *p-adic logarithm*:

$$\log_p(1+x) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n, \quad D(1^-).$$

The *p-adic exponential*:

$$\exp_p(x) := \sum_{n=1}^{\infty} \frac{1}{n!} x^n, \quad D(p^{-1/(p-1)}).$$

The *p-adic binomial expansion*:

$$B_{a,p}(x) = (1+x)^a := \sum_{n=1}^{\infty} \frac{a(a-1)\dots(a-n+1)}{n!} x^n, \quad D(p^{-1/(p-1)}).$$

Proposition

If $a \in \mathbb{Z}_p$ then $B_{a,p} \in \mathbb{Z}_p[[x]]$, and so it converges on $D(1^-)$.

Proposition

The functions \log_p and \exp_p give mutually inverse isomorphisms between the multiplicative group of $D_1(p^{-1/(p-1)})$ and the additive group of $D_0(p^{-1/(p-1)})$.

Proposition

There exists a unique extension f of \log_p to Ω^\times such that:

- $f(xy) = f(x) + f(y)$ for all $x, y \in \Omega^\times$
- $f(p) = 0$.

We will use the notation \log_p for this f from now on.

Newton polygons

Definition

Let $f(x) = 1 + \sum_{i=1}^n a_i x^n \in q + x\Omega[x]$ be a polynomial of degree n and constant term 1. Then the *Newton polygon* of f is the convex hull of the set $\{(0, 0)\} \cup \{(i, \text{ord}_p a_i) : i = 1, \dots, n\}$, i.e. the highest polygonal line joining $(0, 0)$ and $(n, \text{ord}_p a_n)$, that passes on or below all of the points in this set.

The *vertices* of the Newton polygon are the points $(i, \text{ord}_p a_i)$, where the slope changes. If a segment joins the points (i, m) and (i', m') , then its *slope* is $(m' - m)/(i' - i)$, and the *length of the slope* is $i' - i$.

Lemma

Let $f(x) = (1 - x/\alpha_1) \dots (1 - x/\alpha_n) \in \Omega[x]$, where $\alpha_i, i = 1, \dots, n$ are the roots of f . Let $\lambda_i = \text{ord}_p 1/\alpha_i$. If λ is a slope of the Newton polygon of f with length l , then precisely l of the λ_i are equal to λ .

Newton polygons

Definition

Let $f(x) = 1 + \sum_{i=1}^{\infty} a_i x^i \in 1 + x\Omega[[x]]$ be a power series. Let $f_n(x) = 1 + \sum_{i=1}^n a_i x^i \in 1 + x\Omega[x]$ be the n th partial sum of $f(x)$. The *Newton polygon* of f is the limit of the Newton polygons of the f_n .

Lemma

Let b be the least upper bound of all slopes of the Newton polygon of $f \in 1 + x\Omega[[x]]$, then the radius of convergence of f is p^b (if $b = \infty$ then f converges everywhere on Ω).

Newton polygons

p-adic Weierstrass Preparation Theorem

Let $f \in 1 + x\Omega[[x]]$. Suppose that f converges on $D(p^\lambda)$. Let N be the horizontal length of all segments of Newton polygon having slope less than or equal to λ , if that is finite. Otherwise, the Newton polygon has last slope λ , then let N be the greatest i for which $(i, \text{ord}_p a_i)$ lies on the Newton polygon (it exists due to the convergence on $D(p^\lambda)$). Then there exists $h(x) = 1 + \sum_{i=1}^n b_i x^i \in 1 + x\Omega[x]$ and $g(x) \in 1 + x\Omega[[x]]$, such that g converges and is nonzero on $D(p^\lambda)$ and $h(x) = f(x)g(x)$ on $D(p^\lambda)$. Furthermore h is uniquely determined by these properties, and its Newton polygon coincides with the Newton polygon of f until $(N, \text{ord}_p a_N)$.