

Analysis of Stochastic Processes with Neural Networks

Molnár András

Individual Project I.

08-01-2026

Table of Contents

Introduction

Model overview

The uncontrolled model

Simulation framework

Trader dynamics and trading signals

Future work and research directions

Introduction and Motivation

► Classical/Traditional asset price models

- Continuous time processes
- Brownian motion
- Mathematically convenient
- Abstract away from discrete trading events

► Market microstructure models

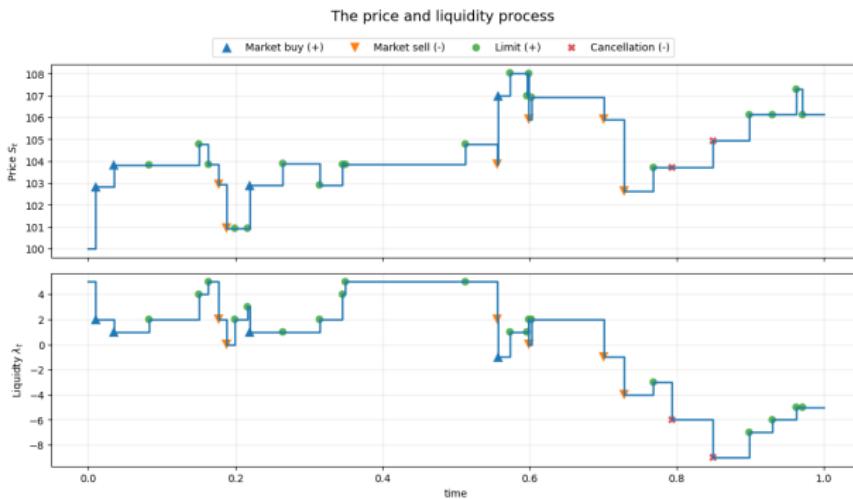
- Market activity is event-driven, not continuous
- Prices evolve through jumps because of trading activity
- Order flow and liquidity are modeled explicitly

Goal of the first project

- ▶ Study and implement a microstructure-based price model
- ▶ Understand how order flow and liquidity drive prices
- ▶ Build a simulation framework in python
- ▶ Explore statistical properties of simulated price paths

Model Overview

- ▶ Based on Bank, Cartea Körber (2024): Optimal execution and speculation with trade signals
- ▶ Market and limit orders
- ▶ Order arrivals are modeled by Poisson point processes
- ▶ Intensity depends on the level of liquidity


$$d\lambda_t = dL_t - |dM_t|$$

- ▶ The asset price reacts only to market orders
 - The impact depends on the level of liquidity

$$dP_t = I(\Delta_t M, \lambda_{t-})$$

The model implementation

- ▶ Single simulated price path
- ▶ Prices and liquidity evolve through discrete jumps

Analysis of simulated price paths

- ▶ Many independent simulations
- ▶ Statistical properties of price paths, liquidity and order arrivals
- ▶ Relation between them
- ▶ Autocorrelations, empirical distributions

Trader dynamics and trading signals

- ▶ Active trader submitting market orders
- ▶ Transaction costs and bid-ask spread included
- ▶ Signal-based trading allows anticipation of market events
- ▶ Trader faces an acquisition problem. Objective: maximize expected utility of terminal wealth
- ▶ Passive trader implemented as a first step

Future work and research directions

- ▶ Calibration of the model to real market data
- ▶ Learning model parameters using neural networks
- ▶ Agent-based and reinforcement learning for trading strategies

Thank you for your attention!

Use of Artificial Intelligence Tools

- ▶ During the project, I used ChatGPT and Gemini to help with the interpretation of the model and to help with the implementation of the simulation and code in Python.
- ▶ References: Bank, P., Cartea, Á., Körber, L. (2024). Optimal execution and speculation with trade signals. arXiv preprint.

