

Genome-Wide Association Studies

Data Processing and Imputation Pipeline

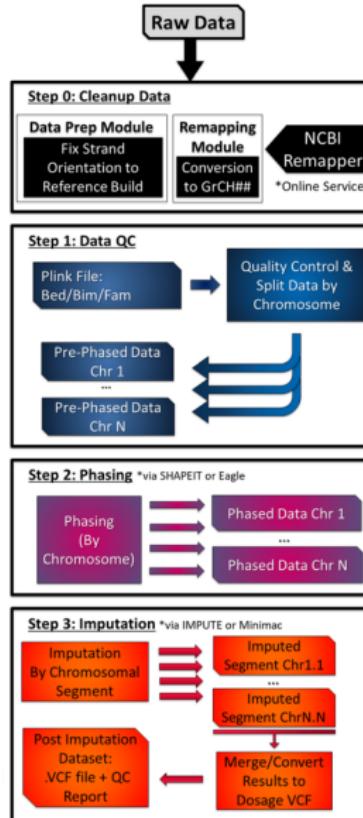
Beáta Éva Nagy

Supervisors: András Botond Nemes, Dr. Gábor Firneisz

January 2026

Genome-Wide Association Studies (GWAS)

- ▶ **Goal:** Find genetic variants statistically associated with diseases/traits (phenotypes)
 - ▶ Focus on Single-Nucleotide Polymorphisms (SNPs)



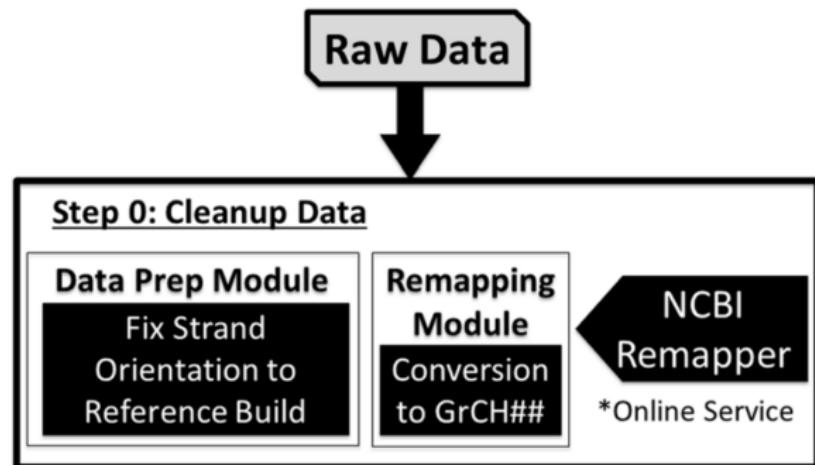
Source: https://www.researchgate.net/figure/A-single-nucleotide-polymorphism-SNP_fig1_359016330

Genome-Wide Association Studies (GWAS)

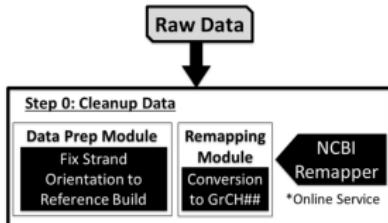
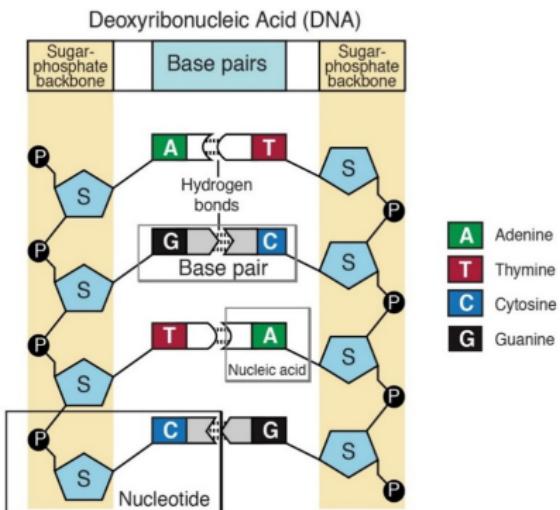
- ▶ **Method:** Statistical hypothesis testing
 - ▶ Millions of SNPs tested
 - ▶ Distinguish real biological associations from chance
 - ▶ Regression models adapted to the trait type (logistic/linear)
- ▶ **Impact:** identifying genetic risk factors
 - ▶ Since 2005, associations for type 2 diabetes, Crohn's disease, obesity etc.

Project Overview

Computational Tools

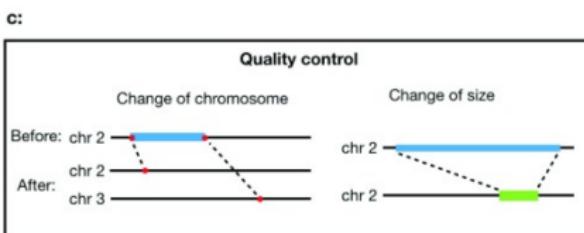
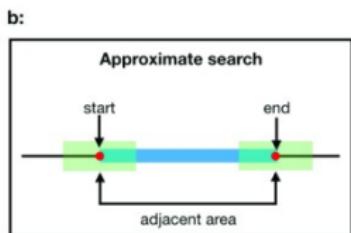
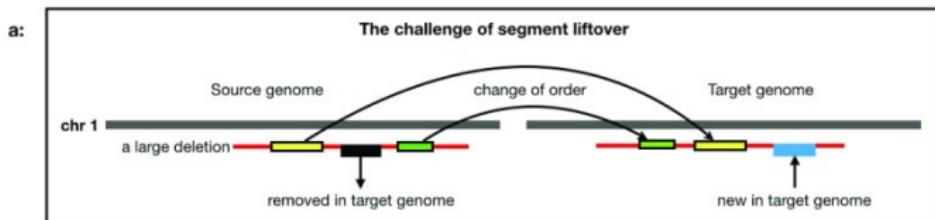
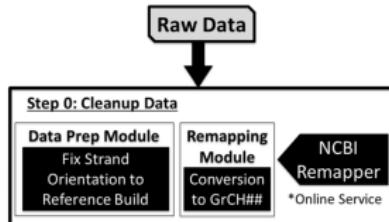

- ▶ PLINK: Quality control + statistical analysis
- ▶ BCFtools: Efficient data manipulation
- ▶ CrossMap: Coordinate conversion between reference assemblies
- ▶ SHAPEIT4: Haplotype phasing
- ▶ Minimac4: Genotype imputation

Raw Data

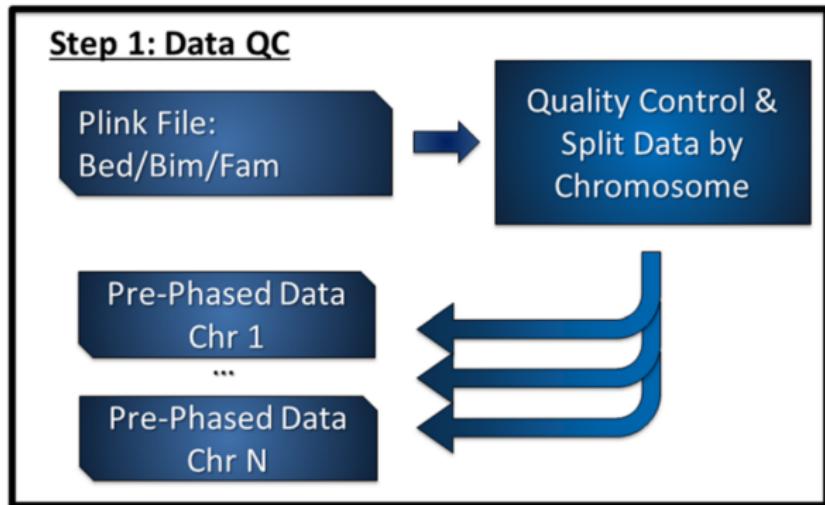
- ▶ Genetic databases
 - ▶ 4 ethnic groups, 5,000 mother – child pairs
 - ▶ Genotype data: 600,000 – 1.2 million SNPs per person
 - ▶ + Phenotype data
- ▶ **Aim:** build two multi-ethnic datasets (mothers + children)

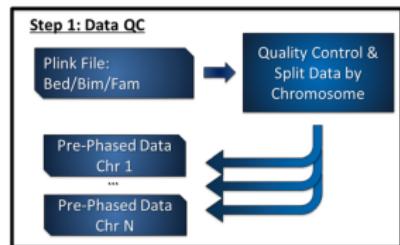
0. Data Cleanup





0.1 Data Cleanup - Strand Orientation Fix

Source: <https://passel12.unl.edu/view/lesson/6f214d098527/4>

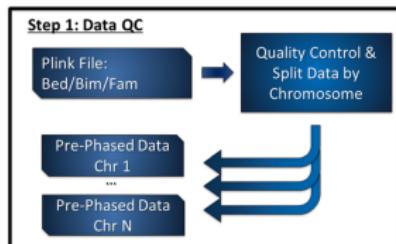
DNA: forward + reverse strand orientation → one consistent representation


0.2 Data Cleanup - Genome Remapping


Source: <https://PMC5998006/>

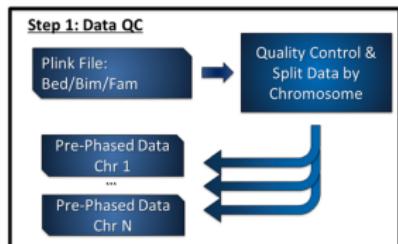
Chromosomal coordinates change over time → genome build version update

1. Quality Control


1.0 Input Data

Three standardized binary files:

- ▶ BED file: Compressed binary, **genotype data**
- ▶ BIM file: Genetic variant information (chromosome, **SNP ID**, position, alleles)
- ▶ FAM file: Individual information (**family** identification, sex, **phenotype**)


1.1 Quality Control Steps

Filtering human + genotyping errors:

1. Remove SNPs with $> 2\%$ missingness
2. Remove individuals with $> 2\%$ missingness
3. Keep only biallelic SNPs (A/C/G/T substitution)

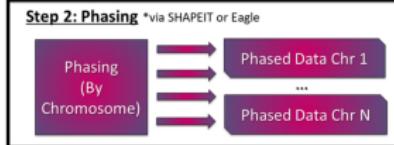
1.1 Quality Control Steps

4. Chromosome Filtering: Remove sex + mitochondrial
5. Sorting and Indexing: Order by position within chromosomes
 - ▶ Indexing: Faster processing of large databases
6. Variant Normalization: Consistent representation
7. Minor (less frequent) Allele Count > 5 filter
 - ▶ Remove rare variants

2. Haplotype Phasing

Step 2: Phasing *via SHAPEIT or Eagle

Phasing
(By
Chromosome)



Phased Data Chr 1

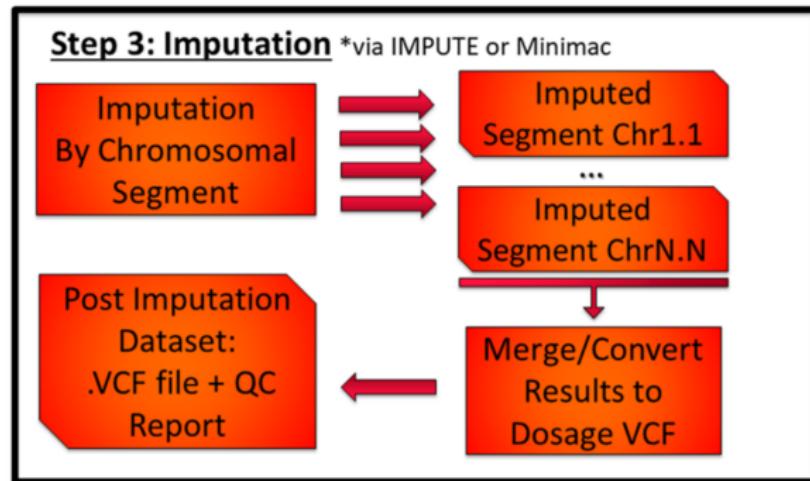
...

Phased Data Chr N

2. Haplotype Phasing

- ▶ Haplotype: Variants inherited together
- ▶ Linkage disequilibrium: Non-random association of nearby variants
- ▶ → splitting: one haplotype from each parent

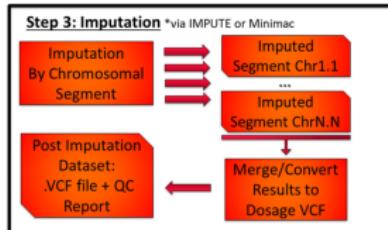
Example SNP chip data


Unphased: G/G A/T A/A T/T G/T A/T T/T A/A G/G G/C

After Phasing

Hap 1:	G	A	A	T	T	T	A	G	C
Hap 2:	G	T	A	T	G	A	T	A	G

Phase-informative Sites


3. Imputation

3.1 Imputation

High-density reference haplotype panel

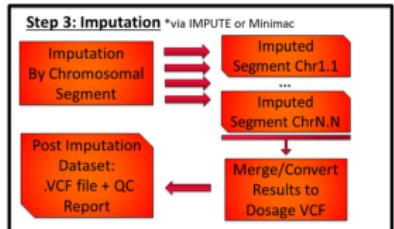
Individuals	SNPs																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	G	T	G	A	A	G	G	A	C	T	T	T	A	T	T	G	C
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
A	G	T	G	A	A	G	G	C	A	A	G	G	T	A	T	G	C

Low-density

genotyped samples
(GBS or SNP array)

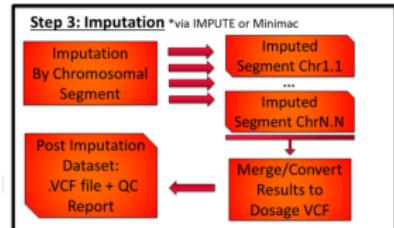
Individuals	SNPs						
	1	5	7	10	15	17	
A	A	G	C	T	C		
C	T	A	G	G	A		
C	T	A	G	G	A		
C	T	A	G	G	A		
A	A	G	C	T	C		
A	A	G	C	T	C		
C	T	A	G	G	A		
C	T	A	G	G	A		

Imputed dataset


Individuals	SNPs																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	G	T	G	A	A	G	G	A	C	T	T	T	A	T	T	G	C
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
A	G	T	G	A	A	G	G	A	C	T	T	T	A	T	G	C	
A	G	T	G	A	A	G	G	A	C	T	T	T	A	T	T	G	C
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	
C	T	G	A	T	G	A	A	G	G	C	A	A	G	G	T	A	

Source:

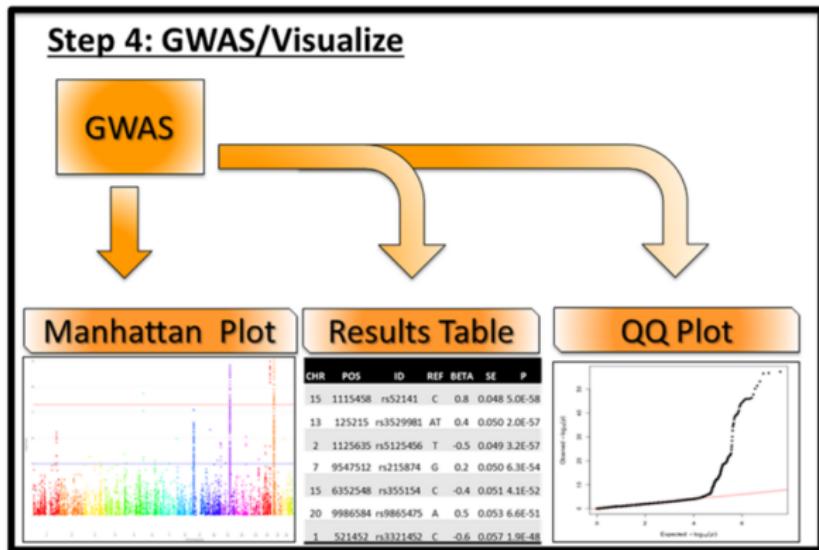
https://www.researchgate.net/figure/Untyped-genotype-imputation-using-haplotype-reference-panel_fig4_322610020


Predict missing variants based on known reference panels

3.2 Imputation Post-Processing

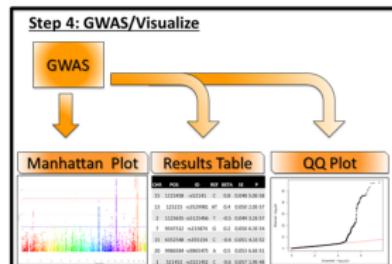
1. Quality metric: R^2 (squared correlation between true and imputed genotypes) → SNPs with $R^2 < 0.3$ excluded
2. Remove SNPs not in all ethnic groups
3. Merge ethnicities → one multi-ethnic mothers + one multi-ethnic children dataset
4. remove SNPs with less frequent variant frequency < 0.025 (ethnicity-specific)

3.3 Imputation Results

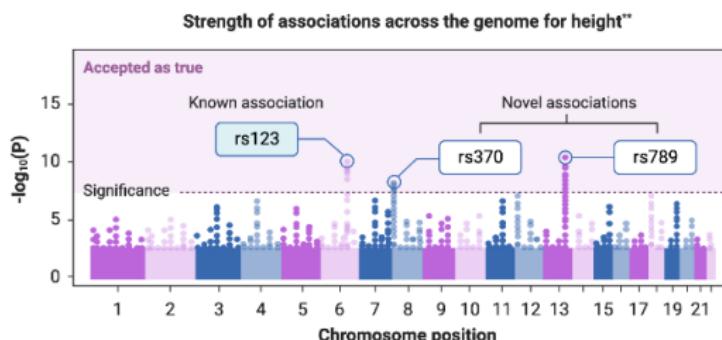


SNP counts:

	European	Hispanic	Thai	Afro-Caribbean
Initial	0.6M	1.0M	1.1M	1.1M
$R^2 = 0.3$	29.0M	32.6M	26.2M	38.6M
$R^2 = 0.8$	11.0M	18.0M	9.4M	23.6M

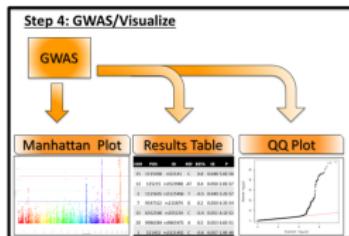

Merged dataset with $R^2 = 0.8$ filter: 18M overlapping SNPs

Next Steps



Next Steps

- ▶ Run GWAS
- ▶ Create Manhattan plot


Manhattan Plot for Genome-Wide Association Studies (GWAS)

** Not a real height GWAS

Source: <https://www.biorender.com/template/manhattan-plot-for-genome-wide-association-studies-gwas>

Next Steps

- ▶ Record significant SNPs ($p < 5 \times 10^{-8}$)
- ▶ Analyze using linear or logistic regression
- ▶ More complex, interaction GWAS analysis

Thank You for Your Attention!

Declaration of the Use of AI

I used AI tools to make my semester work more accurate in the following aspects:

- ▶ Research of biological concepts, reliable sources for the written report
- ▶ Review of biological and grammatical accuracy + understandability of the written report
- ▶ Troubleshooting during the data engineering steps (during the use of the listed computational tools)
- ▶ Improving the visual outline of the written report and presentation