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Finitisztikus dimenzid

Definicié. Legyen R gyiird.
e Fin-proR = sup{pd M | M € R-Mod, pd M < oo}
e fin-proR = sup{pd M | M € R-mod, pd M < oo}

Injektiv dimenziéval definialhaté az injektiv valtozat.
Sejtés. Legyen A véges dimenziés algebra.

Q@ [dA=FdA
Q fdA<
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Nakayama-algebrak

Definicié. Egy algebra Nakayama-algebra, ha minden direkt
felbonthatatlan projektiv és injektiv modul egysoros.

Tétel. Legyen A egy 6sszefiiggé Nakayama-algebra, és legyen M egy
felbonthatatlan A-modulus. Ekkor létezik egy P felbonthatatlan projektiv
A-modulus és egy t egész tigy, hogy M = P/rad"P. Specialisan A
reprezentacié-véges.
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Példa — Az algebra

Legyen G az alabbi graf:

Legyen
I =(Bv, yaB)<KG, A=KG/I.

Ekkor A egy Nakayama-algebra.
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Példa - Osszes felbonthatatlan modulus

A = KG/I algebra direkt felbonthatatlan projektiv modulusai

1 5 3
P1:27P2:37P3:17
3 2

Az el6z6 tételt végigfuttatva a projektiveken azt kapjuk, hogy a
nem-egyszerii, nem-projektiv felbonthatatlan modulusok:

Pl/rad2P1 = ;, P3/rad2P3 = i
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Példa - Projektiv feloldas

A felbonthatatlan modulusok projektiv feloldasai:

9 1 3 1
0—>3—>2—>1—>0 o= 1=22—-_—=0
3 2 3
3 1 3 5 5 3 3
~-—>1—>2—>1—>3—>2—>0 0—>3—>1—>1—>0
2 3 2 2
3 1 3
o= 1=22=-1—=-3-=0
2 3 2

Tehat fin-pro(A) =1
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Injektiv modulusok

3 1
A direkt felbonthatatlan injektiv modulusai /; = i’, bh=1,1K=2 az
2 3
injektiv feloldasok pedig:
1 3 3 3
0—=1—-_ —-2=1—... 0—+2—-1—_—0
1 1
3 2 2
1 3 3 1
0—-3—-2—>1—--- 0O—-_.—-1—-2—---
3 2 2 3
5 1 1 3
0=, —=2=>_—=>2=>1—--. Tehat fin-inj(A) is 1.
3 3 1 3 2
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Kihurkolasi szint

Legyen M egy modulus.
o QM: az els6 syzygy (projektiv fedé magja)

Definicié. Egy modulus kihurkolasi szintje dell M a legkisebb d > 0,
amelyre

QM direkt dsszeadandéja P @ Q4TI M’
ahol P projektiv.
Egy algebra kihurkolasi szintje:

dell A =supdell §
s

ahol S egyszerii modulus.
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Ringel-tétel

Tétel (Ringel). Legyen A Nakayama-algebra. Ha S egyszerdi, legyen
Ms = S, ha S-nek véges a projektiv dimenzigja, kiilonben legyen Mg = IS.
Legyen d = maxg pd Mg

fin-pro A = fin-inj A = dell A = d.

Tregele Maté
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Példa - tétel szerint

) pdSl =1, pd52 = pd53 =00, tehat My =51, Mb = b = Ps,
M3 = I3 = P;. Tehat fin-pro A = maxg pd Ms; = 1.

@ dell 5; # 0, mert nem lehet syzygy, hiszen nincs egyik projektiv
felbonthatatlan talpaban. Viszont Q5; = P, projektiv, tehat
dell S; = 1.

e 5 = Q:]a_, S3 = QS,, tehat dell S, = dell 53 = 0.

o Tehat dell A =1.
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Tovabbi kihurkolasi szamok

Definicié. Egy modulus k-adik kihurkolasi szintje k-dell M a legkisebb
d >0, amelyre

QM direkt dsszeadandéja P & QIthMm’

ahol P projektiv.
Az eddigi példankon:
@ k-dell S; = 1 minden k-ra, mert S; sose syzygy és Q5; projektiv
e S, és S3 projektiv feloldasabél észrevehetjiik, hogy Sz = Q27S3 és
S3 = Q?"1t1S,, széval k-dell S3 = 0 minden k-ra.
o dell S, = 0 mar lattuk. Sy nem 2. syzygy ezért k-dell S, # 0 k > O-re.
De QS5, = S3, amibdl kdvetkezik, hogy k-dell S, = 1 minden k > O-ra.
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Effektiv kihurkolasi szint

Definicié. Legyen M egy A-modulus, k és k' pozitiv egészek. Ekkor a
k-effektiv kihurkolasi szintje M-nek:

k-edell M = inf{ne N[idX =n+k—1+Kk >n+k—1—bsl
kdvetkezik, hogy Ext7\+k/(M,X) =0}

Allitas. FindimA°P = edell A.
Lemma. k-edell M < k-dell M.
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Ellenpélda

Vegyiik G grafnak az alabbit:

B

0 )

1< *2
a2

\/
w

> ——— §

Legyen | = (O[]_O[z, O[]./Ba 051757 ﬁ27/877/80[27 Oéza]_’)/)- Legyen A= KG/I
Ekkor a direkt felbonthatatlan projektiv modulusok:

2
1 213 3 4
2 4 5
3 2 4 5 5
5
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Ellenpélda

N
N = N
N

o1

(€2 IS OV)
ol

o dell S, = dell 53 = dell S5 = 0, mivel projektivek talpaban vannak.
dell 51 és dell S4 nem 0.
o QS, = S5 projektiv, tehat dell S, = 1.

@ Projektiv feloldasok elejét felirva lathato, hogy Q5 = :2)’ nem syzygy.

dell S; # 1.
2 1 4 4 . 1) .. .. .
° Q3 =50 5 @ 5 5 projektiv, 5 &S S, pedig direkt 6sszeadandé

QkS,-ben. Tehat dell S; = 2, dell A =2
@ Azonban megmutathaté erre az algebrara, hogy Findim A°P =1
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Tovabbi kihurkolasi szamok

Definicié. Legyen M egy A-modulus,k > 0 egész. A k-szub-derivalt
kihurkolasi szintje(sub-derived-delooping level) M-nek

k-sub-ddell M = inf{m|3 n < k és egy egzakt sor mod A-ban,
ami0 >M—>Dy—Dy—---—Dp_1—>D,—0
alaka, ahol(k — i)-dell D; < i+ m, i=0,1,...,n}.

Definicié. Legyen M egy A-modulus, k > 0 egész. A k-derivalt kihurkolasi
szintje (derived delooping level) M-nek

k-ddell M = inf{m € N | 3n < m és egy egzakt sor mod A-ban,
ami0—->C,—-C1—>- G —>CG—-M—=0
alakd, ahol (i + k)-dell G; < m—1i, i=0,1,...,n}.
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Tétel. Findim A°P < sub-ddell A < dell A.
Tétel. Findim A°P < ddell A < dell A.
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o Ossze hasonlithaté-e k-sub-ddell A és k-ddell A? Egyel6re csak olyan
példat ismeriink, amelynél ddell A < sub-ddell A.

@ lgaz-e, hogy ddell A = Findim A°P? Egyel&re nincs ellenpélda.

@ Lehet-e mas algebra osztalyokra bizonyitani a finitisztikus dimenzié
sejtést a ddell vagy sub-ddell segitségével? Konnyebb kiszamolni, mint
a findim-et.
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MI hasznalat

A kutatémunka soran MI eszkozoket hasznaltam a kovetkezékre:
@ Latex formazas

o Egyenlet vagy abra képébél Latex kéd gyartasa
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Koszonom a figyelmet!

Kdszonom a figyelmet!
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