

Power Spectral Analysis of Seiches in Lake Fertő

Láng Kristóf

Project Work I.
Supervisor: Dr. Krámer Tamás

08-01-2025

Agenda

Motivation

Theoretical Background

Overarching Model

Power Spectral Analysis

Empirical Orthogonal Functions

Initial Results

Data Preparation

Empirical Orthogonal Functions

Power Spectral Density

Future Work

Motivation

Seiches

- ▶ Seiches are standing waves
- ▶ Formed by external forces (wind, atmospheric pressure)
- ▶ The oscillation of water persists for longer periods of time
- ▶ Seiche periods can only be roughly estimated from theory alone

Lake Fertő

- ▶ Small basin, shallow water, high level of vegetation
- ▶ Strong damping, less persistent oscillations expected

Forced Damped Harmonic Oscillator

Overarching equation: **Forced, damped harmonic oscillator**

The evolution equation of amplitude A can be given by

$$\frac{d^2A}{dt^2} + 2r\frac{dA}{dt} + \omega_n^2A = F \quad (1)$$

- ▶ r is the damping coefficient
- ▶ ω_n is the natural seiche frequency
- ▶ F is the external forcing

r and ω_n are to be estimated using power spectral analysis

r can be estimated through its relation to the Q factor:

$$r = \frac{\omega_{peak}}{2Q} \quad (2)$$

$$Q = \frac{\omega_{peak}}{\Delta\omega_{-3dB}} \quad (3)$$

Power Spectral Analysis

To determine ω_{peak} , we use power spectral analysis.

We convert the time-dependent measurements to the frequency domain

$$PS(\omega) = |Y(\omega)|^2 \quad (4)$$

here, $Y(\omega)$ denotes the Fourier transform:

$$Y(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \quad (5)$$

while $f(t)$ is the lake level data from measurements.

Practice:

- ▶ Data is on a discrete scale
- ▶ Fast Fourier Transform is used
- ▶ Hope: an easily detectable peak at the frequency where energy is the strongest

Empirical Orthogonal Functions

- ▶ More generally called Principle Component Analysis
- ▶ Used to capture the dimensions in the data that make up most of the variance
- ▶ Here: used to deconstruct lake level variability into modes that explain a large part of this variability
- ▶ Primary goal: confirm the existence of a basin wide seiche

Data Preparation

- ▶ Data used from 8 stations around Lake Fertő
- ▶ Water level data taken in 15 minute intervals between 2009 and 2015
- ▶ Fertőrákos initially omitted
- ▶ Before analysis the data was detrended, tide removal is deemed unnecessary
- ▶ Prior to EOF analysis, the mean water level at each station was substracted
- ▶ Different levels of band-averaging used to smooth out data

EOF: Results

An EOF analysis was carried out for all the stations

Expectation:

- ▶ First principal component determining lake-wide water level variations
- ▶ Second PC characterising the primary seiche (first basin mode)

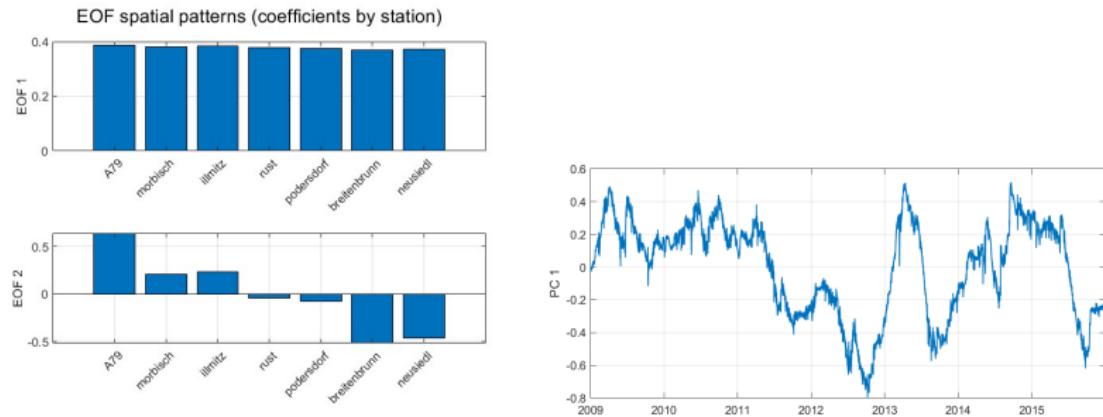


Figure 1: Coefficients of the first two EOF by station, and time series of the first Principal Component

- ▶ The first EOF explains most of the variance

PSD: Results

PSD calculated for all stations across the entire time period, and yearly as well

Band-averaging to negate noise

Expectation: Clear peak at resonance frequency

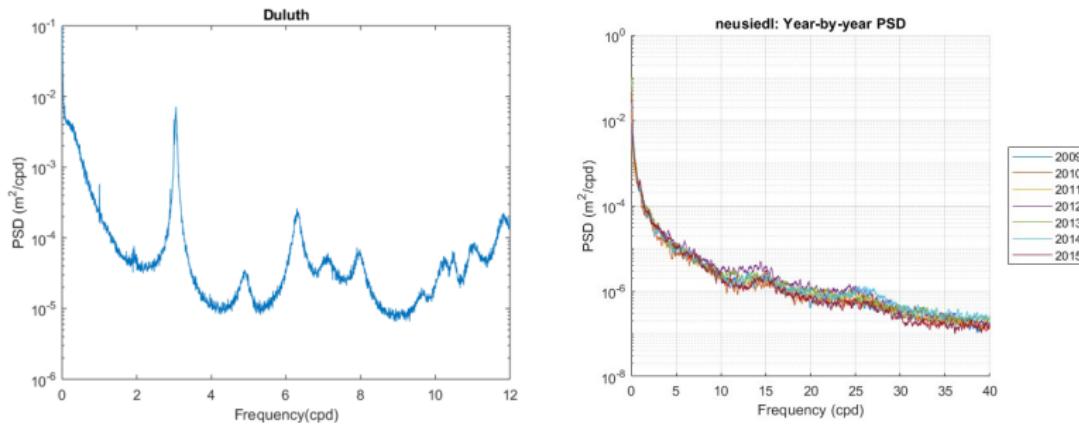


Figure 2: PSD of the reference study for Lake Superior vs. PSD for Lake Fertő at station Neusiedl am See

Future Work

- ▶ Explore different data preparation methods for clearer results
- ▶ Perform Cross-Spectral Analysis, determine coherence
- ▶ Estimate damping and Q factor
- ▶ Explore additional methods used by the reference study

Thank you for your attention!

Usage of Artificial Intelligence

During my project work, I used ChatGPT to help with some unclear parts of code implementation.

References:

Maqsood Mansur. Observation and prediction of seiches in lake superior. Master's thesis, University of Minnesota, 2020.

