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Introduction

AI Boom

Black box behavior Compute requirements

Interplay between neural collapse and quantization



Neural Collapse

Surprisingly simple geometric form of the features and of the classifier

During the terminal phase of training (TPT), when zero error is achieved

Four interconnected phenomena



NC1 - Within-class variability collapse

• Within-class variation of activations becomes negligible as they 
collapse to their class-means

• The within-class covariance matrix approaches zero:

෍Sw  →0



NC2 - Class mean convergence to simplex ETF

• Class-means (after centering) converge to an equiangular tight frame 
(ETF), maximizing pairwise angles and distances



NC3 - Self-dual alignment

• Columns of the last layer linear classifier matrix also form a simplex 
ETF in their dual vector space 

• And converge to the simplex ETF (up to rescaling) of the penultimate 
layer features



NC4 - Nearest class center classification

• Last-layer classifier acts with the nearest class mean decision rule on 
the penultimate layer features



Quantization

• Comprehensive survey by Gholami et al., detailing the main 
quantization approaches

• EfQAT by Ashkboos et al. is a framework for QAT that reduced the 
computational overhead while maintaining accuracy



Machine Vision Experiments

• Metrics of Papyan et al. (2020)

• Convolutional neural networks
• Custom CNNs

• ResNet-18

• MobileNetV3

• Base ConvNeXt variants and their customized versions

• MNIST, CIFAR-10, CIFAR-100



ResNet-18, MNIST Example

200 epochs ≈ 4 hours

SGD with LR scheduling

0.9 momentum

5e-4 weight decay

128 batch size

float32 precision



Linguistic Collapse

NLP requires a new approach as the conditions that give rise to NC in 
computer vision differ here

• LMs are typically undertrained

• Classes are imbalanced

• Class numbers exceed the embedding dimension

• Contexts can be ambiguous to the next token prediction



Language Modeling

• Metrics of Wu and Papyan (2024)

• Preliminary trials with small transformer models

• Character modeling on Shakespeare with nanoGPT



Future Work

• Improving theoretical and practical foundation

• Trials with quantization configurations

• Different Language Models

• Interaction of NC with post-training techniques

• Benchmarking downstream performance on different LLM metrics
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Thank you for your attention!



AI Usage

• During the project, I trained CV and NLP AI models on publicly 
available datasets.

• Gemini 3.0 Pro: Correcting LaTeX page structure and citation 
formatting.

• Claude Sonnet 4.5: Generating Python functions for visualization, 
performance improvements on various functions.
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