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Introduction

Al Boom

Black box behavior Compute requirements

Interplay between neural collapse and quantization



Neural Collapse

Surprisingly simple geometric form of the features and of the classifier
During the terminal phase of training (TPT), when zero error is achieved

Four interconnected phenomena



NC1 - Within-class variability collapse

* Within-class variation of activations becomes negligible as they
collapse to their class-means

* The within-class covariance matrix approaches zero:
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NC2 - Class mean convergence to simplex ETF

* Class-means (after centering) converge to an equiangular tight frame
(ETF), maximizing pairwise angles and distances
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NC3 - Self-dual alignment

* Columns of the last layer linear classifier matrix also form a simplex
ETF in their dual vector space

* And converge to the simplex ETF (up to rescaling) of the penultimate
layer features
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NC4 - Nearest class center classification

 Last-layer classifier acts with the nearest class mean decision rule on
the penultimate layer features
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Quantization

 Comprehensive survey by Gholami et al., detailing the main
guantization approaches

* EfQAT by Ashkboos et al. is a framework for QAT that reduced the
computational overhead while maintaining accuracy



Machine Vision Experiments

* Metrics of Papyan et al. (2020)

e Convolutional neural networks

Custom CNNs

ResNet-18

MobileNetV3

Base ConvNeXt variants and their customized versions

* MNIST, CIFAR-10, CIFAR-100
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Linguistic Collapse

NLP requires a new approach as the conditions that give rise to NC in
computer vision differ here

* LMs are typically undertrained
* Classes are imbalanced
* Class numbers exceed the embedding dimension

* Contexts can be ambiguous to the next token prediction



Language Modeling

* Metrics of Wu and Papyan (2024)

* Preliminary trials with small transformer models
* Character modeling on Shakespeare with nanoGPT



Future Work

* Improving theoretical and practical foundation

* Trials with quantization configurations

 Different Language Models

* Interaction of NC with post-training techniques

* Benchmarking downstream performance on different LLM metrics
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Thank you for your attention!



Al Usage

* During the project, | trained CV and NLP Al models on publicly
available datasets.

* Gemini 3.0 Pro: Correcting LaTeX page structure and citation
formatting.

* Claude Sonnet 4.5: Generating Python functions for visualization,
performance improvements on various functions.
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