

# Linear extensions of partially ordered sets

Júlia Éles

Applied mathematics MSc

2026

# Introduction

- ▶ Given a set  $P$  and a partial ordering  $\prec$  on it, let us count the number of linear extensions of it
- ▶ This is the number of topological orderings of the *cover graph*  $G = (V, A)$  of  $P$ , where  $V = P$  and  $A = \{uv \in P^2 : u \prec v, \nexists w \in P \setminus \{u, v\} : u \prec w \prec v\}$

## Previous results

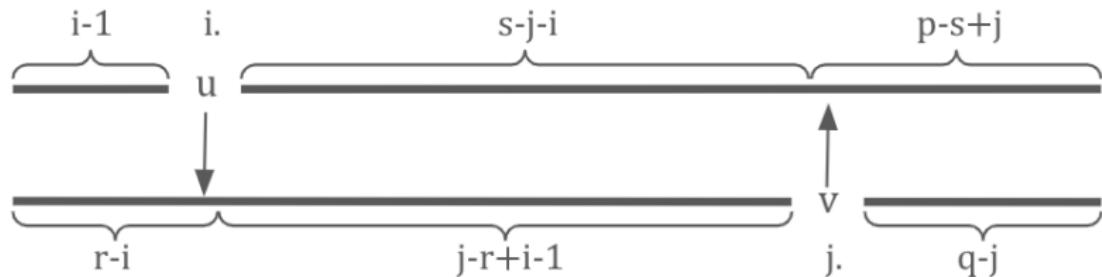
- ▶ G. Brightwell and P. Winkler: the problem is  $\#P$ -hard.[2]
- ▶ Kangas et al.: dynamic programming-based algorithm with time complexity of  $O(n^{t+4})$ [3]
- ▶ K. Kangas, M. Koivisto and S. Salonen: improved to  $O(n^{t+3})$  using nice tree decomposition[4]

## An interesting special case

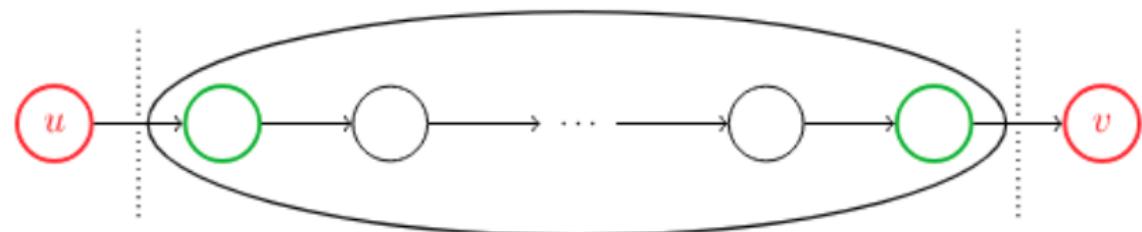
- ▶ When the cover graph is a tree, there exists an algorithm with a running time of  $O(n^2)$ , given by M. D. Atkinson. [1]
- ▶ *Spectrum*:  $\sigma_G : V \rightarrow \mathbb{Z}_+^n$
- ▶  $\sigma_G(v)_i$  is the number of topological orders in which the vertex  $v$  is in the  $i$ -th position
- ▶ Let  $uv$  be an arc, and split up the graph along this arc. Determine the spectrum of  $u$  and  $v$  recursively, and then join them together

## Common spectrum, arc spectrum

- ▶ *Common spectrum*:  $\tau_G : V^2 \rightarrow \mathbb{Z}_+^{n \times n}$
- ▶  $\tau_G(u, v)_{ij}$  is the number of topological orders in which the vertex  $u$  is in the  $i$ -th position, vertex  $v$  is in the  $j$ -th position.
- ▶ Special cases solved: the two vertices are connected with an arc (*arc spectrum*) or with a directed path.



## Common spectrum, arc spectrum



## Future plans

- ▶ Calculating the common spectrum of two vertices which are not connected by a directed path
- ▶ Calculating the common spectrum of 3, 4 or arbitrary  $k$

## References

-  M. D. Atkinson.  
On computing the number of linear extensions of a tree.  
*Order*, 7(1):23–25, 1990.
-  G. Brightwell and P. Winkler.  
Counting linear extensions is  $\#P$ -complete.  
In *Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing*, pages 175–181, 1991.
-  K. Kangas, T. Hankala, T. M. Niinimäki, and M. Koivisto.  
Counting linear extensions of sparse posets.  
In *Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence*, pages 603–609, 2016.
-  K. Kangas, M. Koivisto, and S. Salonen.  
A faster tree-decomposition based algorithm for counting linear extensions.  
*Algorithmica*, 82(8):2156–2173, 2020.

# Usage of AI tools

- ▶ Enchanting the code (mostly in logging)
- ▶ Writing small helper scripts in Python (e.g. drawing a tree based on it's edge list)