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Preliminaries: Multi-dimensional complex analysis
Given a function f : Cn → Cm that is differentiable in the real sense,
one can naturally extend complex analytical concepts to it.
One may treat f as a real function:

f(x1 + y1i, . . . , xn + yni) = fR(x1, y1, . . . , xn, yn)

The real space R2n ' Cn has an associated space of differential forms
spanned by the natural basis {dxi, dyi}. In the complex perspective
however, it is more natural to work with the basis {dzi, dz̄i} with:

dzi = dxi + i dyi dz̄i = dxi − i dyi

For example, in the case with 1 complex dimension, this notation is
equivalent to the usual definition of the line integral:∫

γ

f(z)dz =

∫
γ

Re(f(x+ yi))dx+ i

∫
γ

Im(f(x+ yi))dy
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Preliminaries: Wirtinger derivatives

dzi = dxi + i dyi dz̄i = dxi − i dyi

This basis has a dual basis of directional derivatives. It is given by:

∂

∂zi
=

1

2

∂

∂xi

− i

2

∂

∂yi

∂

∂z̄i
=

1

2

∂

∂xi

+
i

2

∂

∂yi

These are called the Wirtinger derivatives. They are, again, quite
natural. In the case with 1 complex dimension, given a holomorphic
function f , ∂

∂z
f(z) is simply the complex derivative of the function,

while ∂
∂z̄
f(z) = 0. These may be derived from the Cauchy-Riemann

equations.
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Preliminaries: Holomorphy
Working with the natural complex bases, the exterior derivative of a
function becomes:

df =
n∑

i=1

(
∂f

∂zi
dzi +

∂f

∂z̄i
dz̄i

)
We say that a function is holomorphic if its exterior derivative is
within the subspace spanned by {dzi}. We say that it is
anti-holomorphic if it is within the subspace spanned by {dz̄i}.
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Preliminaries: Holomorphic forms
We extend the definition of holomorphic functions to general
differential forms:

dω =
∑
I,J

dωI,J ∧ dzI1 ∧ dz̄J1 ∧ . . . ∧ dzIn ∧ dz̄Jn

We say that the p-form ω is holomorphic if dω is in ∧p+1span{dzi}.
This is equivalent to saying that ω is in ∧pspan{dzi} and each of its
coefficient functions are holomorphic.
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Complex manifolds
Definition (Complex manifold)
A complex manifold M of dimension n is a 2n-manifold equipped
with an open cover {Ui} and charts {φi : Ui → Cn} such that the
transition maps φi ◦ φ−1

j |Ui∩Uj
are holomorphic.

A torus may be supplied with a
complex structure. All such

structures can be realised as quotient
spaces of the complex plane, up to

biholomorphism.

Holomorphic functions are always
smooth, so this is also a smooth
manifold of dimension 2n.
We may then talk about the
usual real tangent spaces of a
complex manifold at a point p,
denoted as TR,p(M).
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Complexified tangent space
Definition
The complexified tangent space TC,p(M) at point p is the vector
space over C of directional derivatives.

A more concise way to write this is as the tensor product
TC,p(M) = Tp(M)⊗R C.
This just allows complex coefficients in directional derivatives.
So for example, if we have a scalar function x2 + y2 in local
coordinates, then:(

∂

∂x
+ i

∂

∂y

)
(x2 + y2) =

(
∂

∂x
x2 + i

∂

∂y
x2

)
+

(
∂

∂x
y2 + i

∂

∂y
y2
)

= (2x+ i · 0) + (0 + i · 2y) = 2x+ 2iy
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Holomorphic tangent space
Since holomorphic functions preserve holomorphy, we may also define
the holomorphic tangent space:
Definition (Holomorphic tangent space)
The holomorphic tangent space T ′

p(M) at a point p is the
subspace of the complexified vector space spanned by the directional
derivatives { ∂

∂zi
}.

This definition is independent of the chart chosen, since the pullback
of the directional derivative ∂

∂zi
by a holomorphic transition map must

itself lie in the subspace spanned by { ∂
∂zi

}.
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Antiholomorphic tangent space
Similary,
Definition
The antiholomorphic tangent space T ′′

p (M) at a point p is the
subspace of the complexified vector space spanned by the directional
derivatives { ∂

∂z̄i
}.

This is simply the complex conjugate of the holomorphic tangent
space space. Clearly, the complexified tangent space decomposes as:

TC,p(M) = T ′
p(M)⊕ T ′′

p (M)
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The structure of differential forms
Denote with Ap(M) the space of complex differential p-forms on M .
By definition, this is the p-th exterior power of the cotangent space:

Ap(M) = ∧pT ∗
C(M)

Here, the cotangent space decomposes into the holomorphic and
antiholomorphic cotangent spaces. Thus:

Ap(M) = ∧pT ∗
C(M)

= ∧p(T ′∗(M)⊕ T ′′∗(M))

=
∑

r+s=p

(∧rT ′∗(M)⊕ ∧sT ′′∗(M))

We denote Ar,s := ∧rT ′∗(M)⊕ ∧sT ′′∗(M), called the space of
complex differential forms of form (p, q).
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The exterior derivative
The exterior derivative d : Ap → Ap+1 also extends to complex
manifolds. It is not difficult to see that Im(d|Ap,q) ⊂ Ap+1,q ⊕ Ap,q+1.
Thus the exterior derivative also decomposes into a holomorphic and
antiholomorphic part:

d = ∂ + ∂̄

where
∂|Ap,q ⊂ Ap+1,q ∂̄|Ap,q ⊂ Ap,q+1

It is then true that d2 = ∂2 = ∂̄2 = 0. These operators therefore both
define cochains:

0 −→ A0 d−−−−→ A1 d−−−−→ A2 d−−−−→ · · ·
0 −→ Ap,0 ∂̄−−−−→ Ap,1 ∂̄−−−−→ Ap,2 ∂̄−−−−→ · · ·
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Cohomologies
0 −→ A0 d−−−−→ A1 d−−−−→ A2 d−−−−→ · · ·
0 −→ Ap,0 ∂̄−−−−→ Ap,1 ∂̄−−−−→ Ap,2 ∂̄−−−−→ · · ·

Definition (De Rham cohomology)
The de Rham cohomology is given by d acting on the spaces Ap:

Hp
DR =

ker(d|Ap)

im(d|Ap−1)

Definition (Dolbeault cohomology)
The Dolbeault cohomology is given by ∂ acting on the spaces Ap,q:

Hp,q

∂̄
=

im(∂̄|Ap,q−1)

ker(∂̄|Ap,q)
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Example: De Rham cohomology of the torus
Given a (non-degenerate) lattice Λ = Z+ τZ, the quotient space
T = C/Λ has the topology of a torus. It is also naturally a complex
manifold. It has the de Rham cohomology groups of

H0
DR(T ) = R H1

DR(T ) = R2 H2
DR(T ) = R

H0
DR(T ) represents that the space is connected.

H1
DR(T ) represents that a closed 1-form is exact only if its integral is

0 along any closed path. Since the fundamental group of T has 2
dimensions, so does H1

DR(T ). It is generated by dx and dy.
H2

DR(T ) represents that a closed 2-form is exact only if its integral is
0 along the entire space. As such, H2

DR(T ) is generated by dx ∧ dy.
All other cohomology groups are trivial, since there are no non-zero
3-forms on T .
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Example: Dolbeault cohomology of the torus
The Dolbeault cohomology groups of the torus are

H0,0

∂̄
(T ) ' C H0,1

∂̄
(T ) ' C

H1,0

∂̄
(T ) ' C H1,1

∂̄
(T ) ' C

These happen to correspond nicely to the de Rham cohomology
groups. It turns out that the groups have the following generators:

H0,0

∂̄
(T ) = 〈1〉 H0,1

∂̄
(T ) = 〈dz̄〉

H1,0

∂̄
(T ) = 〈dz〉 H1,1

∂̄
(T ) = 〈dz ∧ dz̄〉
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Example: Dolbeault cohomology of the torus

H0,0

∂̄
(T ) = 〈1〉 H0,1

∂̄
(T ) = 〈dz̄〉

H1,0

∂̄
(T ) = 〈dz〉 H1,1

∂̄
(T ) = 〈dz ∧ dz̄〉

So actually,
H1

DR(T )⊗ C = H1,0

∂̄
(T )⊕H0,1

∂̄
(T )

In other terms, the de Rham cohomology decomposes into the
appropriate levels of the Dolbeault cohomology. This is called the
Hodge decomposition. This is the case for all compact so-called
Kähler manifolds. In this context, the Dolbeault cohomology refines
the de Rham cohomology.

14/21



Example: The punctured plane
The punctured plane, C∗ = C\{0}, is also a complex manifold.
H1

DR(C∗) is 1-dimensional, generated by the form

x dy − y dx

x2 + y2

This is the derivative of the argument function.
H0

DR(C∗) is also 1-dimensional, and higher cohomology groups are
trivial.
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Example: The punctured plane
In contrast, the Dolbeault cohomology is not so nice. Since ∂̄ takes
all holomorphic functions to 0, H0,0

∂̄
(C∗) consists of all holomorphic

functions. As a vector space, this has countably infinite dimensions.
So we see that Hodge decomposition fails for non-compact spaces.
H1,0

∂̄
(C∗) is also infinite dimensional, consisting of all holomorphic

forms.

H0,0

∂̄
(C∗) = {f : C∗ → C holomorphic}

H1,0

∂̄
(C∗) = {f dz | f : C∗ → C holomorphic}
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Example: The punctured plane

The scalar function exp(−1/x) is holomorphic on the punctured
plane, but it is not 0.
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Example: The punctured plane
All other Dolbeault cohomology groups are trivial. For example, for
any holomorphic f , the 1-form f dz is exact, since

∂̄(f z̄) = z̄∂̄(f) + f∂̄(z̄)

= 0 + f

Even the classical obstruction of 1
z̄

not being integrable disappears.

∂̄ log|z|2 = ∂̄(log(z) + log(z̄))

= 0 +
1

z̄

So all smooth functions on C∗ are ∂̄-exact, which is why the higher
Dolbeault cohomology groups are trivial.
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Poincaré lemma
To help us in the study of these cohomologies, we have the Poincaré
lemma.
Lemma (Poincaré)
Let ω ∈ Ap(∆) for a contractible set ∆ for which dω = 0. Then
∃φ ∈ Ap−1(M) : dφ = ω.
Ergo, all closed p-forms are exact.

Lemma (∂̄-Poincaré)
Let ω ∈ Ap,q(∆) for a contractible set ∆ for which ∂̄ω = 0. Then
∃φ ∈ Ap,q−1 : ∂̄φ = ω.
Ergo, all closed (p, q)-forms are exact.

These tell us that the de Rham and Dolbeault cohomologies are
locally trivial.
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Aside: The de Rham theorem
Suppose that σ is a closed singular p-chain and ω a closed p-form.
p-chains can be smoothly approximated. Thus we can calculate the
integral:

Iω(σ) =

∫
σ

ω

This is linear in ω and σ. If σ is a boundary, or if ω is exact, then by
the Gauss theorem, Iω(σ) = 0. The construction thus induces a
morphism:

HDR(M) → H∗
sing(M)

ω 7→ Iω

Theorem (de Rham)
This is an isomorphism.
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The Dolbeault theorem
One might think to ask if the de Rham theorem has an analogue for
the Dolbeault cohomology. As it turns out, it does, via the Čech
cohomology. Denoting the sheaf of holomorphic p-forms Ωp, the
following holds:
Theorem (Dolbeault)

Hp,q

∂̄
' Ȟq(M,Ωp)

This may be proven using a sufficiently fine covering to make every
sheaf section exact and then using ∂̄-Poincaré lemma and the zig-zag
lemmma to repeatedly lower the order of the Čech cohomology group
while raising the number of antiholomorphic dimensions in the sheaf.
The right hand side eventually reduces to the definition of Hp,q

∂̄
.
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