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Motivation and background

m classical optimal transport problem: Monge (1781),
Kantorovich (1940s)

m quantum optimal transport with quantum channels: de Palma
& Trevisan (2021)

m application areas: fluid mechanics, machine learning, image
processing and economics
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Classical optimal transport I.

m initial distribution on X : (X, Ax, 1)
m final distribution on Y : (Y, Ay, v)
m cost function c(x,y): X x Y — Ry

Definition

A transport plan between the probability measures p € Prob(X)
and v € Prob(Y) is a probability measure m € Prob(X x Y) such
that

/ dn(x,y) = du(x) and / dn(x,y) = dv(y).
14 X
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Classical optimal transport Il.

m [1(p, v) denotes the set of transport plans from p to v

m goal: minimizing the transport cost, i.e. finding

inf  I[x] = inf / c(x,y)dm(x, >
meM(p,v) g 7r€ﬂ(w*)< XxY b y)d(xy)
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Wasserstein distance

m if X = Y and the cost function has the form
c(x,y) := d(x,y)P where d(x,y)P is a metric
® a metric in the space of probability measures on X is:

Wasserstein distance of order p:

W)= nt ([ dteyyrantan) "

meM(p,v)
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Quantum optimal transport |.

m underlying Hilbert space : # = C*"

m Pauli matrices
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Quantum optimal transport Il. (Quantum states)

m set of quantum states in 7 = C?" :
S (C2") = {Q el (C2n) 20> 0,tr[g] = 1}.

m pure state: rank 1 projection, i.e. there exists a unit vector
1 € C?" such that o = |¥) (] .
m the set of pure states: P; (C?")
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Quantum optimal transport III.

m The set of couplings of states p,w € S(H) :
Clo.w) = {MeSHOH) : trpe M = w try[N] = o}

where try <[] and try (] stand for the partial traces of I1.

m The quantum Wasserstein distance of states ¢ and w with
respect to a cost operator C:

1/2
Dc(o,w) = (neicf'(f;w)tm@%*[nc]) :
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Quantum optimal transport IV. (Quantum Wasserstein
isometries)

Definition
A map ¢ : S(H) — S(H) is an isometry of the quantum
Wasserstein distance D¢ if

Dc(®(0), ®(w)) = Dc(o,w)

holds for all states g,w € S(H).
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New results I. (Symmetric cost in 2" dimension)

3
2
Cs(;r%: Z <(Uj1®-..®0’j,,)®/27;—/2n®(0j1®...®0’jn)T) .
J1ye-1jn=0

n n 1
=247 o @ 1 — 247 |1} {{far .
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New results II. (corollaries of the spectral decomposition )

Corollary

<247 @ I,
where < stands for the Loewner order (positive semidefinite order).

by estimating the distance of two states g,w € § (C2n) from above
with the cost respect to the trivial coupling w ® o” we obtain

Corollary

2
<Ds(}',7,)n(g,w)> <2-4" VoweS (Czn) .
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New results Ill. (corollaries of the spectral decomposition)

m by explicit calculation of the transport cost for the trivial
coupling w® o' :

tr [Cs(y”%(w ® @T)] =247 (1 - zlntr[w9]> :

Corollary

(D& )2:2.4" _
sym(0, W) = trlwo] = 0.

m If at least one of the states is pure, the only coupling is the
trivial, so the converse implication is also true.
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New results IV.

Definition
Diameter of a qubit state space:

diam (S (C*") ,Dsym) =  sup  Dsym(0,w).
Q,wGS(CZ")

Our following result states that a state g is pure if and only if there
exists a 2"-simplex in the space of states with maximal quantum
Wasserstein distance between all its vertices and one of its vertices
being o.
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New results V.

For any state o € S(C?") the following are equivalent:
0 € P1(C*"), ie. o is pure
30102, - - -, 00n—1 € S(C?") such that

Dsym(Qja Qk) = diam (S(Czn)a Dsym)
for any j # k € {0,1,...,2" — 1} with g9 = 0.

Corollary

If & : S(C*") — S(C?") is a Dsym-isometry, then ® maps pure
states to pure states.
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New results VI. (Symmetry transformations)

An operator T : S(C?") — S(C?") is a symmetry transformation if
it preserves transition probabilities, i.e.

tr[T(0)T(w)] =tr[ow] for all p,w € S(C*").

Theorem

Wigner theorem:
If T :S(C?") — S(C?") is a symmetry transformation, then there
exists a unitary or anti-unitary operator U such that

T(0) = UpU'  for all g € S(C*").

Eszter Szabd Advisor: Déniel Virosztek

Quantum Wasserstein isometries of n-qubit state spaces with respect to the symmetric transport cost



New results VII: (A Wigner-type characterization)

The following theorem gives a characterisation of Dsym-isometries
in S(C?").

Theorem
Let & : S(C?") — S(C?") be a map.
The following are equivalent:

® is a Dsym-isometry

there exists a unitary or anti-unitary operator U such that

®(0) = UpUT  for all o € S(C?").
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Future goals

Eszter Szabd

removing one Pauli matrix from the set of generators makes
the structure of quantum Wasserstein isometries dramatically
different in the single qubit space ~~ cost operators generated
by a subset of all tensor products of Pauli matrices in n-qubit
systems

quantum Wasserstein isometries on systems where the
dimension of the underlying Hilbert space is not a power of
two

infinite-dimensional generalizations of our n-qubit results
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Thank you for your attention!
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