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Eszter Szabó Advisor: Dániel Virosztek

Quantum Wasserstein isometries of n-qubit state spaces with respect to the symmetric transport cost



Motivation and background

classical optimal transport problem: Monge (1781),
Kantorovich (1940s)

quantum optimal transport with quantum channels: de Palma
& Trevisan (2021)

application areas: fluid mechanics, machine learning, image
processing and economics
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Classical optimal transport I.

initial distribution on X : (X ,AX , µ)

final distribution on Y : (Y ,AY , ν)

cost function c(x , y) : X × Y → R+

Definition

A transport plan between the probability measures µ ∈ Prob(X )
and ν ∈ Prob(Y ) is a probability measure π ∈ Prob(X × Y ) such
that ∫

Y
dπ(x , y) = dµ(x) and

∫
X
dπ(x , y) = dν(y).
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Classical optimal transport II.

Π(µ, ν) denotes the set of transport plans from µ to ν

goal: minimizing the transport cost, i.e. finding

inf
π∈Π(µ,ν)

I [π] = inf
π∈Π(µ,ν)

(∫
X×Y

c(x , y)dπ(x , y)

)
.
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Wasserstein distance

if X = Y and the cost function has the form
c(x , y) := d(x , y)p where d(x , y)p is a metric

a metric in the space of probability measures on X is:

Definition

Wasserstein distance of order p:

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
X×X

d(x , y)pdπ(x , y)

)1/p

.
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Quantum optimal transport I.

underlying Hilbert space : H = C2n

Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Quantum optimal transport II. (Quantum states)

set of quantum states in H = C2n :

S
(
C2n

)
=

{
ϱ ∈ L

(
C2n

)
: ϱ ≥ 0, tr[ϱ] = 1

}
.

pure state: rank 1 projection, i.e. there exists a unit vector
ψ ∈ C2n such that ϱ = |ψ⟩ ⟨ψ| .
the set of pure states: P1

(
C2n

)
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Quantum optimal transport III.

The set of couplings of states ϱ, ω ∈ S(H) :

C (ϱ, ω) =
{
Π ∈ S(H⊗H∗) : trH∗ [Π] = ω, trH[Π] = ϱT

}
,

where trH∗ [Π] and trH[Π] stand for the partial traces of Π.

The quantum Wasserstein distance of states ϱ and ω with
respect to a cost operator C :

DC (ϱ, ω) =

(
inf

Π∈C(ϱ,ω)
trH⊗H∗ [ΠC ]

)1/2

.
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Quantum optimal transport IV. (Quantum Wasserstein
isometries)

Definition

A map Φ : S(H) → S(H) is an isometry of the quantum
Wasserstein distance DC if

DC (Φ(ϱ),Φ(ω)) = DC (ϱ, ω)

holds for all states ϱ, ω ∈ S(H).
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New results I. (Symmetric cost in 2n dimension)

Definition

C
(n)
sym =

3∑
j1,...,jn=0

(
(σj1 ⊗ . . .⊗ σjn)⊗ IT2n − I2n ⊗ (σj1 ⊗ . . .⊗ σjn)

T
)2
.

Theorem

C
(n)
sym = 2 · 4n · I2n ⊗ IT2n − 2 · 4n · 1

2n
||I2n⟩⟩ ⟨⟨I2n || .
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New results II. (corollaries of the spectral decomposition )

Corollary

C
(n)
sym ≤ 2 · 4n · I2n ⊗ IT2n ,

where ≤ stands for the Loewner order (positive semidefinite order).

by estimating the distance of two states ϱ, ω ∈ S
(
C2n

)
from above

with the cost respect to the trivial coupling ω ⊗ ϱT we obtain

Corollary

(
D

(n)
sym(ϱ, ω)

)2
≤ 2 · 4n ∀ϱ, ω ∈ S

(
C2n

)
.
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New results III. (corollaries of the spectral decomposition)

by explicit calculation of the transport cost for the trivial
coupling ω ⊗ ϱT :

tr
[
C

(n)
sym(ω ⊗ ϱT )

]
= 2 · 4n

(
1− 1

2n
tr [ωϱ]

)
,

Corollary

(
D

(n)
sym(ϱ, ω)

)2
= 2 · 4n =⇒ tr [ωϱ] = 0.

If at least one of the states is pure, the only coupling is the
trivial, so the converse implication is also true.
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New results IV.

Definition

Diameter of a qubit state space:

diam
(
S
(
C2n

)
,Dsym

)
= sup

ϱ,ω∈S(C2n)
Dsym(ϱ, ω).

Our following result states that a state ϱ is pure if and only if there
exists a 2n-simplex in the space of states with maximal quantum
Wasserstein distance between all its vertices and one of its vertices
being ϱ.
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New results V.

Theorem

For any state ϱ ∈ S(C2n) the following are equivalent:

1 ϱ ∈ P1(C2n), i.e. ϱ is pure

2 ∃ϱ1ϱ2, . . . , ϱ2n−1 ∈ S(C2n) such that

Dsym(ϱj , ϱk) = diam
(
S(C2n),Dsym

)
for any j ̸= k ∈ {0, 1, . . . , 2n − 1} with ϱ0 = ϱ.

Corollary

If Φ : S(C2n) → S(C2n) is a Dsym-isometry, then Φ maps pure
states to pure states.
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New results VI. (Symmetry transformations)

Definition

An operator T : S(C2n) → S(C2n) is a symmetry transformation if
it preserves transition probabilities, i.e.

tr [T (ϱ)T (ω)] = tr [ϱω] for all ϱ, ω ∈ S(C2n).

Theorem

Wigner theorem:
If T : S(C2n) → S(C2n) is a symmetry transformation, then there
exists a unitary or anti-unitary operator U such that

T (ϱ) = UϱU† for all ϱ ∈ S(C2n).
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New results VII: (A Wigner-type characterization)

The following theorem gives a characterisation of Dsym-isometries
in S(C2n).

Theorem

Let Φ : S(C2n) → S(C2n) be a map.
The following are equivalent:

1 Φ is a Dsym-isometry

2 there exists a unitary or anti-unitary operator U such that

Φ(ϱ) = UϱU† for all ϱ ∈ S(C2n).
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Future goals

removing one Pauli matrix from the set of generators makes
the structure of quantum Wasserstein isometries dramatically
different in the single qubit space ⇝ cost operators generated
by a subset of all tensor products of Pauli matrices in n-qubit
systems

quantum Wasserstein isometries on systems where the
dimension of the underlying Hilbert space is not a power of
two

infinite-dimensional generalizations of our n-qubit results
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Thank you for your attention!
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