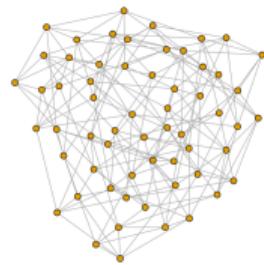


Multitype branching processes for modeling complex contagion on social networks

Bori Petőfi

Mathematics Major, Semester I.

Supervisor: György Michaletzky, PhD


Motivation and background

- ▶ Centola's experiment on social contagion
- ▶ Complex contagion:
 $p_1 := \mathbb{P}(\text{A node getting infected from the first active node contact}),$
 $q_1 := \mathbb{P}(\text{A node not getting infected from the first contact}) = 1 - p_1,$
 $q_k := \mathbb{P}(\text{A node not getting infected from the } k\text{th contact}) = q_1(1 - \alpha)^{k-1},$
 $p_k := \mathbb{P}(\text{A node gets infected from the } k\text{th contact}) = 1 - q_k$
- ▶ Newman-Miller graphs
- ▶ Multitype branching process using motifs to simulate

Key results in programming

- ▶ Generating particular graphs with a given structure

Three 6-regular graphs on 60 vertices:

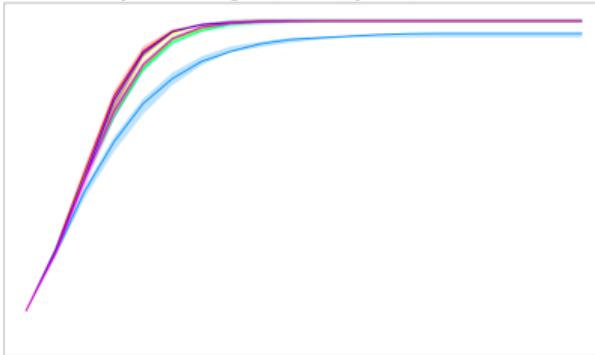
Each vertex in six K_2

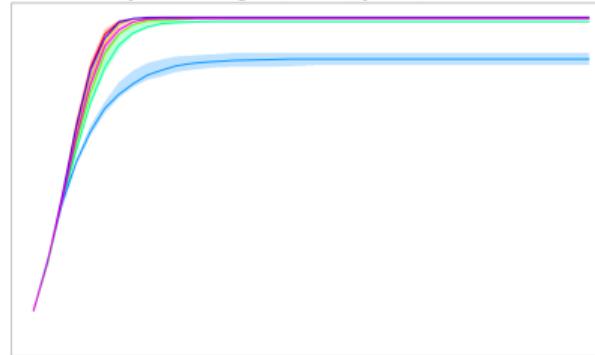
Each vertex in two K_4

Each vertex in a K_2 and a K_5

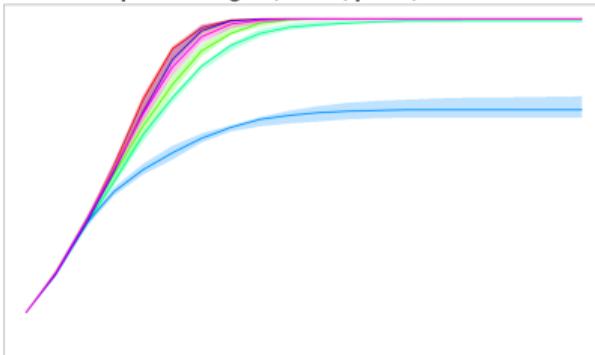
Key results in programming

- ▶ Generating graphs with a given structure
- ▶ Visualisation of the spreading with different parameters




Key results in programming

- ▶ Generating graphs with a given structure
- ▶ Visualisation of the spreading with different parameters
- ▶ Simulations on differently structured graphs with varying parameters


Complex contagion, $\alpha=0.2$, $p=0.4$, seeds=100

Complex contagion, $\alpha=0.3$, $p=0.3$, seeds=100

Complex contagion, $\alpha=0.4$, $p=0.2$, seeds=100

- 6_K2
- 3_K3
- 2_K4
- 1_K5_1_K3
- 1_K6_1_K2
- 2_K3_2_K2
- 1_K4_1_K3_1_K2

Future work

- ▶ Simulations using branching processes
- ▶ Expanding the research to larger cliques and higher-degree graphs
- ▶ Multiple directions for further development

Thank you for your attention

References

L. A. Keating, J. P. Gleeson, and D. J. P. O'Sullivan.

Multitype branching process method for modeling complex contagion on clustered networks.

Physical Review E, 105(3):034306, 2022.

M. E. J. Newman.

Random graphs with clustering.

Physical Review Letters, 103(5):058701, 2009.

J. C. Miller.

Percolation and epidemics in random clustered networks.

Physical Review E, 80(2):020901, 2009.

D. Centola.

The spread of behavior in an online social network experiment.

Science, 329(5996):1194–1197, 2010.

S. Unicomb, G. Iñiguez, J. Kertész, and M. Karsai.

Reentrant phase transitions in threshold-driven contagion on multiplex networks.

Physical Review E, 100(4):040301, 2019.

Use of AI Tools

AI-based tools were used for

- ▶ improving wording and structure of the presentation and summary,
- ▶ LaTeX formatting and layout assistance,
- ▶ programming.