

Spectral Analysis of Lake Balaton Seiche

Data Processing and Methodological Framework

Zalán Horlik

December 2025

January 8, 2026

1. Introduction: The Seiche Phenomenon

- **What is a Seiche?**

- A standing wave in an enclosed or semi-enclosed body of water.
- Triggered by wind forcing or atmospheric pressure variations.

- **Why Lake Balaton?**

- Shallow depth and elongated geometry make it highly susceptible.
- Even moderate wind events induce noticeable fluctuations.

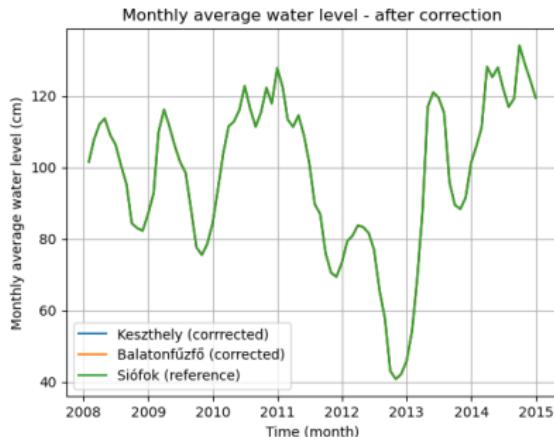
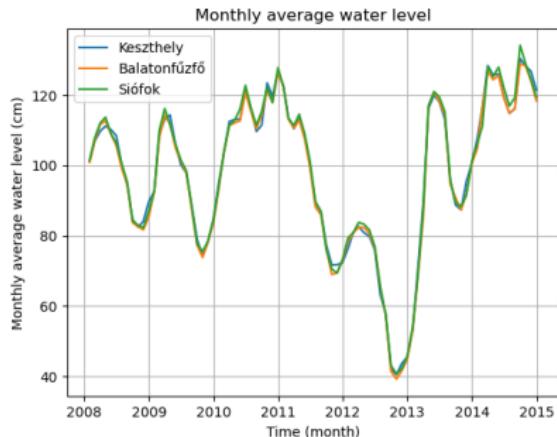
- **Relevance:**

- Harbor dynamics, shoreline flooding risks, and ecological processes.

2. Data Acquisition

Data Source

- Source: General Directorate of Water Management (OVF).
- Period: **2008 – 2014.**



Temporal Resolution Issues

- **5-minute resolution:** Available for Balatonfűzfő, Keszthely, and Siófok.
- **15-minute resolution:** Available for all other stations.
- **Challenge:** The 5-minute datasets exhibited systematic vertical measurement shifts (inconsistencies).

3. Data Preprocessing Results

Correction Method:

- Monthly aggregation was used to identify offsets.
- **Siófok** was used as the reference station for leveling.
- Short gaps (< 3 hours) were filled via linear interpolation.

Figure: Comparison of 5-minute Keszthely, Balatonfűzfő and Siófok water level records, before and after the correction.

4. Methodology: Spectral Analysis Tools

To analyze the dynamics, the following mathematical tools will be applied:

- ① **Power Spectral Analysis:** To identify the natural frequency (f_0) of the seiche.

$$P(f) = |X(f)|^2$$

- ② **Cross-Spectral Analysis:** To determine phase relationships between stations (e.g., Keszthely vs. Balatonfűzfő).

$$\gamma_{xy}^2(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)}$$

- ③ **Wavelet Analysis:** To capture the temporal evolution and damping of transient seiche events.

5. Future Work and Goals

The immediate next steps focus on specific spectral investigations:

- **High-Resolution Comparison:** Compute energy spectra for 1-week storm events to compare resolution limits ($T > 10$ min vs. $T > 30$ min) against the theoretical transverse seiche mode.
- **Spectral Analysis (Basin-wide):** Identify the dominant longitudinal oscillation modes across the entire dataset.
- **Q-Factor Estimation:** Quantify the damping characteristics (ratio of stored to dissipated energy) of the system.
- **Cross-Spectral Analysis:** Investigate spatial correlations to map the phase relationships between stations.

Summary

- **Status:** Data from 2008-2014 has been cleaned, corrected for vertical shifts, and interpolated.
- **Key Result:** A high-quality, continuous dataset (Feb 2011 - Mar 2013) is ready.
- **Next Phase:** Implementation of Fourier and Wavelet analysis to model the physical properties of the Balaton seiche.

AI Disclosure

In accordance with academic integrity guidelines, I disclose that **Gemini (Google)** was used as a thought partner and technical assistant for:

- **Source Analysis:** Interpretation of hydrodynamic and spectral literature.
- **Technical Support:** Debugging \LaTeX code and visualization scripts.
- **Structuring:** Developing the study's outline and presentation flow.