

Cosmological polytopes

Individual project 1

Tünde Gurin
Adviser: Lilla Tóthmérész

Eötvös Loránd University

2025

Motivation

- *Cosmological polytopes* arise in the study of Feynman diagrams
- Their geometry encodes physical information
- Computing physical quantities requires *triangulating* them
- *Root polytopes* are often easier to triangulate

Goal: Use ideas from root polytopes to understand triangulations of cosmological polytopes.

The cosmological polytope and the root polytope

Let $G = (V, E)$ be a connected, undirected graph.

- Work in $\mathbb{R}^{|V|+|E|}$ with basis vectors: $\{x_i : i \in V\}$, $\{x_e : e \in E\}$

Definition

The *cosmological polytope* of $G = (V, E)$ is

$$C_G = \text{conv}\{x_i + x_j - x_e, x_i - x_j + x_e, -x_i + x_j + x_e : e = ij \in E\}.$$

This is a polytope of dimension $|V| + |E| - 1$.

Definition

Let G be a bipartite graph with color classes V and E . The *root polytope* of G is

$$Q_G = \text{conv}\{x_v + x_e : v \in V, e \in E, ve \text{ is an edge in } G\}.$$

This is a polytope of dimension $|V| + |E| - 2$.

Basic question

Question: Can C_G be realized as a root polytope?

- C_G and Q_G have different dimensions
($\dim(C_G) = |V| + |E| - 1$ and $\dim(Q_G) = |V| - 1$)
- They cannot coincide for the same graph

Question: Do there exist a graph G' such that $C_G = Q_{G'}$?

Example: $C_G = Q_{G'}$

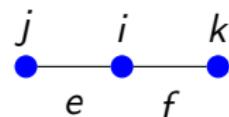
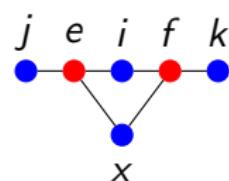
Let G be a path with vertices i, j, k .

- C_G has 6 vertices in \mathbb{R}^5
- 4 simplices, 2 possible triangulations

Idea: The vertices of C_G can be viewed as a vector matroid, and it has a graphic realization.

- The realization is a bipartite graph (G')
- $Q_{G'}$ has the same vertex dependencies

Result: Identify vertices appropriately $\Rightarrow C_G \cong Q_{G'}$ and their triangulations match under this correspondence



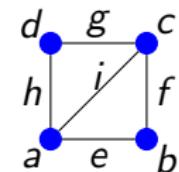
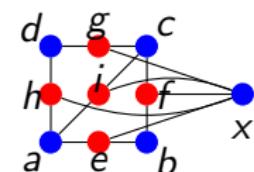
General construction

For a given graph G :

- Subdivide each edge by a new vertex
- Add a new vertex x
- Connect x to all "edge-vertices"

We obtain a bipartite graph G' :

- $|V(C_G)| = |V(Q_{G'})|$
- $\dim C_G = \dim Q_{G'}$



There is a natural bijection between the vertices of the two polytopes

Preservation of dependencies

Proposition

The construction preserves linear dependencies among vertices.

Limitations:

Although the bijection preserves linear dependencies, but it does **not** preserve triangulations in general.

Open problem:

Can the construction be modified to preserve triangulations?

Thank you for your attention!