(p,q)-Type Theorems in Geometric Settings

Beimar Naranjo Supervisor: Dr. Dömötör Pálvölgyi

December 2025

1 Introduction

During this semester, I studied some of the main techniques used in discrete geometry. Specifically, my studies focused on piercing problems for families of convex sets satisfying the (p,q)-condition. A family $\mathcal F$ of sets in $\mathbb R^d$ satisfies the (p,q)-condition if among any p sets in $\mathcal F$, there exist q sets with a common point.

For some time, it was an open question whether this property was sufficient to guarantee the existence of finitely many points piercing all sets in a family of convex sets, with $p \ge q \ge d+1$. In 1992, Alon and Kleitman [2] solved this problem.

Theorem 1.1 (The (p,q)-theorem). Let p,q,d be integers with $p \geq q \geq d+1$. Then there exists a number $HD_d(p,q)^1$ such that if $\mathcal{F} \subseteq \mathbb{R}^d$ is a family of convex sets satisfying the (p,q)-condition, then \mathcal{F} has a transversal consisting of at most $HD_d(p,q)$ points.

A natural follow-up question is how large $HD_d(p,q)$ must be. Remarkably, the proof of Alon and Kleitman provides bounds that are far from optimal. For instance, in the simplest non-trivial case, a family of convex sets in the plane satisfying the (4,3)-condition, their bound is 343. Nevertheless, this bound was lowered to 13 in 2001 by Kleitman, Gyárfás, and Tóth [6]. Recently, McGinnis proved that $HD_2(4,3) \leq 9$, and it is conjectured that $HD_2(4,3) = 3$.

Other variants of the (p,q)-problem consider different properties for the family \mathcal{F} , for instance, non-piercing families, families of pseudodisks, or piercing with hyperplanes instead of points.

Theorem 1.2 (A (p,q)-theorem for hyperplane transversals, [1]). Let $p \ge d+1$, and let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d such that among every p members of \mathcal{F} , there exist d+1 that have a common hyperplane transversal (i.e., there is a hyperplane intersecting all of them). Then there exist at most C = C(p,d) hyperplanes whose union intersects all members of \mathcal{F} .

Again, the natural question is what the optimal value of such a constant C is. The technique showcased by McGinnis [9] for the (p,q)-problem also provides a method to prove that if a family of compact connected sets in the plane has the property that every three members are intersected by a line, then there exist three lines intersecting all the sets in the family. In the following section, we briefly discuss such arguments.

 $^{^{1}}$ This notation refers to Hadwiger and Debrunner, who first raised the problem.

2 The (4,3)-problem

As mentioned earlier, the best current bound for the (4,3)-problem was given by McGinnis [8]. His approach relies on two main tools.

Theorem 2.1 (KKM theorem [7]). Let A_1, \ldots, A_n be open subsets of the simplex Δ^{n-1} such that for every face σ of Δ^{n-1} we have $\sigma \subseteq \bigcup_{e_i \in \sigma} A_i$. Then $\bigcap_{i=1}^n A_i \neq \emptyset$.

The second tool is a result of Tardos [10] concerning 2-intervals. Let L_1 and L_2 be two homeomorphic copies of \mathbb{R} . A 2-interval is a set of the form $I = I_1 \cup I_2$ where each I_i is an interval in L_i .

Theorem 2.2 (Tardos [10]). *If* \mathcal{I} *is a family of* 2-*intervals, then* $\tau(\mathcal{I}) \leq 2\nu(\mathcal{I})$.

Given a family $\mathcal C$ of convex bodies satisfying the (4,3)-property, we rescale it so that every set lies inside the unit circle. For a parametrization f(t) of the circle with $t \in [0,1]$, and a point $x = (x_1, x_2, x_3, x_4) \in \Delta^3$, McGinnis defines a partition of the circle into four regions R_x^1, \ldots, R_x^4 as in Figure 1.

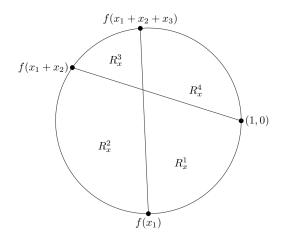


Figure 1: Partition of the unit circle corresponding to a point $x \in \Delta^3$ (from McGinnis [8]).

The regions R_x^j are open and may be empty, but they are always well defined since $x_i \geq 0$ and $\sum_{i=1}^4 x_i = 1$. McGinnis then defines the sets $A_i \subseteq \Delta^3$ by declaring that $x \in A_i$ if there exist three sets $C_1, C_2, C_3 \in \mathcal{C}$ with nonempty intersection and such that all pairwise intersections lie in R_x^i .

Assume that $\Delta^3 \not\subseteq \bigcup_{i=1}^4 A_i$, i.e. there exists $x \in \Delta^3 \setminus \bigcup_{i=1}^4 A_i$. Then the sets in $\mathcal C$ that lie entirely inside a region R^i_x can be pierced with two points. Let $\mathcal D$ denote the sets in $\mathcal C$ that intersect the two dividing segments determined by x. Each $C \in \mathcal D$ gives rise to a 2-interval $I_{\mathcal C}$.

Theorem 2.3. If $x \in \Delta^3 \setminus \bigcup_{i=1}^4 A_i$, then $\tau(\mathcal{D}) \leq 6$.

Proof. Let $\mathcal{I} = \{I_C : C \in \mathcal{D}\}$. Consider four sets $C_1, C_2, C_3, C_4 \in \mathcal{D}$. By the (4,3)-property, some triple, say C_1, C_2, C_3 , intersects. Since $x \notin \bigcup_{i=1}^4 A_i$, the intersection $C_1 \cap C_2$ must

lie on one of the two dividing segments, implying $I_{C_1} \cap I_{C_2} \neq \emptyset$. Thus \mathcal{I} contains no four pairwise disjoint elements, so $\nu(\mathcal{I}) \leq 3$. Tardos's theorem gives $\tau(\mathcal{I}) \leq 6$.

Hence, if such an x exists, the family $\mathcal C$ can be pierced by at most 8 points. The remaining case is when the sets A_i cover the simplex. Note that these sets satisfy the conditions of the KKM theorem.

Theorem 2.4. If $\Delta^3 \subseteq \bigcup_{i=1}^4 A_i$, then there exists a point $x \in \bigcap_{i=1}^4 A_i$.

Fix such an x and consider the regions R_x^1,\ldots,R_x^4 induced by it. The two dividing segments meet at a point c, which forms the first of the nine piercing points. By convexity, any set not pierced by c must avoid at least one of the regions R_x^i . Let \mathcal{C}_i be the sets avoiding R_x^i . McGinnis then performs a detailed case analysis to show that $\tau(\mathcal{C}_i) \leq 2$ for each $i \in [4]$, yielding a total transversal of size at most 9.

3 Colorful versions

The same technique can be adapted to piercing by lines [9]. In this context, the minimum size of a transversal of lines is called the *line-piercing number*.

Theorem 3.1. Let $\mathcal{F}_1, \ldots, \mathcal{F}_6$ be families of compact connected sets in \mathbb{R}^2 . If every triple $A_1 \in \mathcal{F}_{i_1}, A_2 \in \mathcal{F}_{i_2}, A_3 \in \mathcal{F}_{i_3}$ with $1 \leq i_1 < i_2 < i_3 \leq 6$ is intersected by a line, then there exists $i \in [6]$ such that the line-piercing number of \mathcal{F}_i is at most 3.

Remark. The same statement holds even if only five families are considered [4].

To prove this, one needs a colorful variant of the KKM theorem due to Gale [5].

Theorem 3.2 (Colorful KKM theorem [5]). For each $i \in [n]$, let $\{A_i^1, \ldots, A_i^n\}$ be open sets in the simplex Δ^{n-1} satisfying the KKM condition: for every face σ we have $\sigma \subseteq \bigcup_{e_j \in \sigma} A_i^j$. Then there exists a permutation $\pi \in S_n$ such that $\bigcap_{i=1}^n A_i^{\pi(i)} \neq \emptyset$.

Moreover, one could wonder whether a colorful version of the (p,q)-theorem holds. This was answered by Bárány, Fodor, Montejano, Oliveros, and Pór [3] in 2014. Let $\mathcal{F}_1,\ldots,\mathcal{F}_p$ be finite families of convex sets in \mathbb{R}^d , and write $\mathcal{F} = \bigcup_i \mathcal{F}_i$. A heterochromatic p-tuple is a tuple C_1,\ldots,C_p with $C_i\in\mathcal{F}_i$. The family \mathcal{F} satisfies the heterochromatic $(p,q)_H$ -condition, if every heterochromatic p-tuple of \mathcal{F} contains an intersecting q-tuple.

Theorem 3.3 (Colorful (p,q)-theorem [3]). Let p,q,d be integers with $p \ge q \ge d+1$. There exists a constant M(p,q,d) such that the following holds: if $\mathcal{F}_1,\ldots,\mathcal{F}_p$ satisfy the heterochromatic $(p,q)_H$ -condition, then for at least q-d indices $i \in [p]$ we have $\tau(\mathcal{F}_i) \le M(p,q,d)$.

4 Future work

In the next semester, I plan to continue studying (p,q)-type problems in different geometric settings and their colorful variants. In particular, I am interested in exploring potential improvements of the current best bound for the (4,3)-problem.

References

- [1] N. Alon and G. Kalai. Bounding the piercing number. *Discrete & Computational Geometry*, 13:245–256, 1995. doi:10.1007/BF02574042.
- [2] N. Alon and D. J. Kleitman. Piercing convex sets and the Hadwiger–Debrunner (p,q)-problem. *Advances in Mathematics*, 96(1):103–112, 1992.
- [3] I. Bárány, F. Fodor, L. Montejano, and P. Soberón. Colourful and fractional (p,q)-theorems. *Discrete & Computational Geometry*, 51:628–642, 2014.
- [4] M. Csizmadia. Improvement on line transversals of families of connected sets in the plane. *arXiv preprint arXiv:2509.00138*, 2025.
- [5] D. Gale. Equilibrium in a discrete exchange economy with money. *International Journal of Game Theory*, 13(1):61–64, 1984.
- [6] D. J. Kleitman, A. Gyárfás, and G. Tóth. Convex sets in the plane with three of every four meeting. In *Paul Erdős and His Mathematics* (Budapest, 1999), volume 21, pages 221–232, 2001.
- [7] B. Knaster, C. Kuratowski, and S. Mazurkiewicz. Ein beweis des fixpunktsatzes für n-dimensionale simplexe. *Fundamenta Mathematicae*, 14(1):132–137, 1929.
- [8] D. McGinnis. A family of convex sets in the plane satisfying the (4,3)-property can be pierced by nine points. *Discrete & Computational Geometry*, 68:860–880, 2020.
- [9] D. McGinnis and S. Zerbib. Line transversals in families of connected sets in the plane. *SIAM Journal on Discrete Mathematics*, DOI: 10.1137/21M1408920, 2022.
- [10] G. Tardos. Transversals of 2-intervals, a topological approach. *Combinatorica*, 15(1):123–134, 1995.