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The general problem

A family F of sets in Rd satisfies the (p, q)-condition if among any
p sets in F , there exist q sets with a common point.

Theorem (The (p, q)-theorem)

Let p, q, d be integers with p ≥ q ≥ d + 1. Then there exists a
number HDd(p, q) such that if F ⊆ Rd is a finite family of convex
sets satisfying the (p, q)-condition, then F has a transversal
consisting of at most HDd(p, q) points.
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The general problem

Other variants of the (p, q)-problem consider different properties
for the family F , for instance, non-piercing families, families of
pseudodisks, or piercing with hyperplanes instead of points.

Theorem (A (p, q)-theorem for hyperplane transversals, [1])

Let p ≥ d + 1, and let F be a finite family of convex sets in Rd

such that among every p members of F , there exist d + 1 that
have a common hyperplane transversal (i.e., there is a hyperplane
intersecting all of them). Then there exist at most C = C (p, d)
hyperplanes whose union intersects all members of F .
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Fixed Point Iteration Method

The proof of Alon and Kleitman provides bounds that are far from
optimal. For instance, in the simplest non-trivial case, a family of
convex sets in the plane satisfying the (4, 3)-condition, their bound
is 343. Nevertheless, this bound was lowered to 13 in 2001 by
Kleitman, Gyárfás, and Tóth.

In 2020, McGinnis proved that HD2(4, 3) ≤ 9, and it is conjectured
that HD2(4, 3) = 3. His method also provides a way to prove that
if a family of compact connected sets in the plane has the property
that every three members are intersected by a line, then there exist
three lines intersecting all the sets in the family.
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The KKM Theorem

As mentioned earlier, the best current bound for the (4, 3)-problem
was given by McGinnis [2]. His approach relies on two main tools.

Theorem (KKM theorem)

Let A1, . . . ,An be open subsets of the simplex ∆n−1 such that for
every face σ of ∆n−1 we have σ ⊆

⋃
ei∈σ Ai . Then

⋂n
i=1 Ai ̸= ∅.
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2-intervals

The second tool is a result of Tardos concerning 2-intervals. Let L1
and L2 be two homeomorphic copies of R. A 2-interval is a set of
the form I = I1 ∪ I2 where each Ii is an interval in Li .

Theorem

If I is a family of 2-intervals, then τ(I) ≤ 2ν(I).
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Idea of the proof

For a parametrization f (t) of the circle with t ∈ [0, 1], and a point
x = (x1, x2, x3, x4) ∈ ∆3,
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Idea of the proof

Let the sets Ai ⊆ ∆3 be such that x ∈ Ai if there exist three sets
C1,C2,C3 ∈ F with nonempty intersection and such that all
pairwise intersections lie in R i

x .

Assume that ∆3 ̸⊆
⋃4

i=1 Ai , i.e. there exists x ∈ ∆3 \
⋃4

i=1 Ai .
Then the sets in F that lie entirely inside a region R i

x can be
pierced with two points. Let D denote the sets in F that intersect
the two dividing segments determined by x . Each C ∈ D gives rise
to a 2-interval IC .
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Theorem

If x ∈ ∆3 \
⋃4

i=1 Ai , then τ(D) ≤ 6.

Proof.

Let I = {IC : C ∈ D}. Consider four sets C1,C2,C3,C4 ∈ D. By
the (4, 3)-property, some triple, say C1,C2,C3, intersects. Since
x /∈

⋃4
i=1 Ai , the intersection C1 ∩ C2 must lie on one of the two

dividing segments, implying IC1 ∩ IC2 ̸= ∅. Thus I contains no four
pairwise disjoint elements, so ν(I) ≤ 3. Tardos’s theorem gives
τ(I) ≤ 6.
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Idea of the proof

The remaining case is when the sets Ai cover the simplex. Note
that these sets satisfy the conditions of the KKM theorem.

Theorem

If ∆3 ⊆
⋃4

i=1 Ai , then there exists a point x ∈
⋂4

i=1 Ai .

Fix such an x and consider the regions R1
x , . . . ,R

4
x induced by it.

The two dividing segments meet at a point c , which forms the first
of the nine piercing points.
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Idea of the proof

By convexity, any set not pierced by c must avoid at least one of
the regions R i

x . Let Ci be the sets avoiding R i
x . McGinnis then

performs a detailed case analysis to show that τ(Ci ) ≤ 2 for each
i ∈ [4], yielding a total transversal of size at most 9.
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Colorful Versions

In this context, the minimum size of a transversal of lines is called
the line-piercing number.

Theorem

Let F1, . . . ,F6 be families of compact connected sets in R2. If
every triple A1 ∈ Fi1 ,A2 ∈ Fi2 ,A3 ∈ Fi3 with 1 ≤ i1 < i2 < i3 ≤ 6
is intersected by a line, then there exists i ∈ [6] such that the
line-piercing number of Fi is at most 3.

The same statement holds even if only five families are considered
[1]. To prove this, one needs a colorful variant of the KKM
theorem due to Gale.
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Colorful KKM Theorem

Theorem (Colorful KKM theorem, Gale 1984)

For each i ∈ [n], let {A1
i , . . . ,A

n
i } be open sets in the simplex

∆n−1 satisfying the KKM condition: for every face σ we have
σ ⊆

⋃
ej∈σ A

j
i . Then there exists a permutation π ∈ Sn such that⋂n

i=1 A
π(i)
i ̸= ∅.
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Moreover, one may wonder whether a colorful version of the
(p, q)-theorem holds. This was answered by Bárány, Fodor,
Montejano, Oliveros, and Pór [3] in 2014.

Let F1, . . . ,Fp be finite families of convex sets in Rd , and write
F =

⋃
i Fi . A heterochromatic p-tuple is a tuple C1, . . . ,Cp with

Ci ∈ Fi . The family F satisfies the heterochromatic
(p, q)H -condition, if every heterochromatic p-tuple of F contains
an intersecting q-tuple.
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Colorful (p, q)-theorem

Theorem (Colorful (p, q)-theorem, [3])

Let p, q, d be integers with p ≥ q ≥ d + 1. There exists a constant
M(p, q, d) such that the following holds: if F1, . . . ,Fp satisfy the
heterochromatic (p, q)H -condition, then for at least q − d indices
i ∈ [p] we have τ(Fi ) ≤ M(p, q, d).
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Future work

In the next semester, I plan to continue studying (p, q)-type
problems in different geometric settings and their colorful variants.
In particular, I am interested in exploring potential improvements
of the current best bound for the (4, 3)-problem.
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