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The general problem

A family F of sets in RY satisfies the (p, g)-condition if among any
p sets in F, there exist g sets with a common point.

Theorem (The (p, g)-theorem)

Let p, g, d be integers with p > g > d + 1. Then there exists a
number HDy(p, q) such that if F C RY is a finite family of convex
sets satisfying the (p, g)-condition, then F has a transversal
consisting of at most HD4(p, q) points.
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The general problem

Other variants of the (p, g)-problem consider different properties
for the family JF, for instance, non-piercing families, families of
pseudodisks, or piercing with hyperplanes instead of points.



The (p, q)-problem
oceo

The general problem

Other variants of the (p, g)-problem consider different properties
for the family JF, for instance, non-piercing families, families of
pseudodisks, or piercing with hyperplanes instead of points.

Theorem (A (p, g)-theorem for hyperplane transversals, [1])

Let p> d+1, and let F be a finite family of convex sets in RY
such that among every p members of F, there exist d + 1 that
have a common hyperplane transversal (i.e., there is a hyperplane
intersecting all of them). Then there exist at most C = C(p, d)
hyperplanes whose union intersects all members of F.
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Fixed Point Iteration Method

The proof of Alon and Kleitman provides bounds that are far from
optimal. For instance, in the simplest non-trivial case, a family of
convex sets in the plane satisfying the (4, 3)-condition, their bound
is 343. Nevertheless, this bound was lowered to 13 in 2001 by
Kleitman, Gyarfas, and Téth.

In 2020, McGinnis proved that HD,(4,3) < 9, and it is conjectured
that HD»(4,3) = 3. His method also provides a way to prove that
if a family of compact connected sets in the plane has the property
that every three members are intersected by a line, then there exist
three lines intersecting all the sets in the family.
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The KKM Theorem

As mentioned earlier, the best current bound for the (4, 3)-problem
was given by McGinnis [2]. His approach relies on two main tools.

Theorem (KKM theorem)

Let Ay, ..., A, be open subsets of the simplex A"~1 such that for
every face o of A" we have o C |, ¢, Ai- Then (i Ai # 0.
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2-intervals

The second tool is a result of Tardos concerning 2-intervals. Let L;
and L, be two homeomorphic copies of R. A 2-interval is a set of
the form | = l; U I, where each /; is an interval in L;.

Theorem
IfZ is a family of 2-intervals, then 7(Z) < 2v(Z). J
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Idea of the proof

For a parametrization f(t) of the circle with t € [0, 1], and a point
x = (x1, %2, x3,x4) € A3,

J(@1 + a2 + x3)
f (1 +22)

(1,0)



The (4, 3)-problem
0000000

Idea of the proof

Let the sets A; C A3 be such that x € A; if there exist three sets
G, Gy, G3 € F with nonempty intersection and such that all
pairwise intersections lie in R}.

Assume that A3 & J1_; A;, i.e. there exists x € A3 \ Ui, A
Then the sets in F that lie entirely inside a region R, can be
pierced with two points. Let D denote the sets in F that intersect
the two dividing segments determined by x. Each C € D gives rise
to a 2-interval /.
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Theorem
If x € A3\ U7, A;, then 7(D) < 6.

Proof.

Let Z = {Ic : C € D}. Consider four sets Cy, Gy, C3, G4 € D. By
the (4, 3)-property, some triple, say Ci, G, C3, intersects. Since

x ¢ Uf}:l A;, the intersection C; N G must lie on one of the two
dividing segments, implying Ic, N Ic, # 0. Thus Z contains no four
pairwise disjoint elements, so v(Z) < 3. Tardos's theorem gives
7(Z) <6. O
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Idea of the proof

The remaining case is when the sets A; cover the simplex. Note
that these sets satisfy the conditions of the KKM theorem.

Theorem
If A3 C \Ji_| A, then there exists a point x € (\1_; A;. J
Fix such an x and consider the regions R}, ..., R induced by it.

The two dividing segments meet at a point ¢, which forms the first
of the nine piercing points.
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Idea of the proof

By convexity, any set not pierced by ¢ must avoid at least one of
the regions R.. Let C; be the sets avoiding R.. McGinnis then
performs a detailed case analysis to show that 7(C;) < 2 for each
i € [4], yielding a total transversal of size at most 9.

fz1 + @2+ 3)
f(z1 + 22)

(1,0)

f(l’l>
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Colorful Versions

In this context, the minimum size of a transversal of lines is called
the line-piercing number.

Theorem

Let Fi,...,Fe be families of compact connected sets in R?. If
every triple Ay € Fi, Ay € Fi,, A3 € Fi, with1 < i1 <ib <i3<6
is intersected by a line, then there exists i € [6] such that the
line-piercing number of F; is at most 3.

The same statement holds even if only five families are considered
[1]. To prove this, one needs a colorful variant of the KKM
theorem due to Gale.
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Colorful KKM Theorem

Theorem (Colorful KKM theorem, Gale 1984)

For each i € [n], let {A},... AT} be open sets in the simplex
A1 satisfying the KKM condition: for every face o we have
o C UejEJ AJ,.. Then there exists a permutation w € S,, such that

N, ATO 0.
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Moreover, one may wonder whether a colorful version of the
(p, g)-theorem holds. This was answered by Barany, Fodor,
Montejano, Oliveros, and Pér [3] in 2014.

Let F1,...,F, be finite families of convex sets in R?, and write

F =; Fi. A heterochromatic p-tuple is a tuple Gy, ..., C, with
C; € F;. The family F satisfies the heterochromatic

(p, g)y-condition, if every heterochromatic p-tuple of F contains
an intersecting g-tuple.
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Colorful (p, q)-theorem

Theorem (Colorful (p, g)-theorem, [3])

Let p, q,d be integers with p > q > d + 1. There exists a constant
M(p, q,d) such that the following holds: if Fi,...,F, satisfy the
heterochromatic (p, q)y-condition, then for at least ¢ — d indices

i € [p] we have 7(F;) < M(p, q,d).
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Future work

In the next semester, | plan to continue studying (p, q)-type
problems in different geometric settings and their colorful variants.
In particular, | am interested in exploring potential improvements
of the current best bound for the (4, 3)-problem.
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