

Monochromatic Monotone Path Problems and (3,2)-Sequences

Zoltán Molnár-Sáska

ELTE
Individual Project
Supervisor: Gábor Damásdi

2025

Some famous problems

Theorem (Erdős–Szekeres)

For any positive integers A, B , every sequence of length $AB + 1$ contains either an increasing subsequence of length $A + 1$ or a decreasing subsequence of length $B + 1$.

Happy Ending Problem (Erdős–Szekeres)

For every $n \geq 3$, let $N(n)$ be the smallest number such that any set of $N(n)$ points in the plane in general position contains n points in convex position. ($N(n)$ is known to be finite.)

Conjecture:

$$N(n) = 2^{n-2} + 1.$$

- Motivation: analyse these in a more generic framework

Monochromatic Monotone Path Problem

Definition

Let $N_k(q, n)$ be the smallest integer N such that every q -coloring of the edges of the complete k -uniform hypergraph on the ordered vertex set $\{1, \dots, N\}$ contains a monochromatic monotone path of length n .

- A monotone path is just a sequence $i_1 < i_2 < \dots < i_m$ such that all edges $(i_j, i_{j+1}, \dots, i_{j+k-1})$ have the same color
- The classical EST corresponds to bounding $N_2(2, n)$
 - EST is also transitive, but this does not change the answer here
- For $k > 3$ it is unknown whether transitivity affects $N_k(q, n)$
- General bounding techniques:
 - vertex labeling via down-sets
 - pigeonhole principle

The General Monotone Sequence Problem

Definition

A sequence x_1, \dots, x_L with $x_i \in [n]^r$ is *s-increasing* if for any $i < j$, at least s coordinates satisfy $x_{i,k} < x_{j,k}$. Let $L(r, s; n)$ denote the maximum possible length L of such an *s-increasing* sequence.

- Directly related to the hypergraph problem
 - e.g. $s = 1, r = q$ gives a q -coloring interpretation for the 2-uniform (graph) case

The $(3, 2)$ -Sequence Problem

- We focus on $F(n) = L(3, 2; n)$ (2 out of 3 coordinates strictly increase between any two elements of the sequence)
- Known asymptotic bounds:

$$\Omega(n^{3/2}) \leq F(n) \leq O(n^{2-\varepsilon}) \quad \text{for some } \varepsilon > 0$$

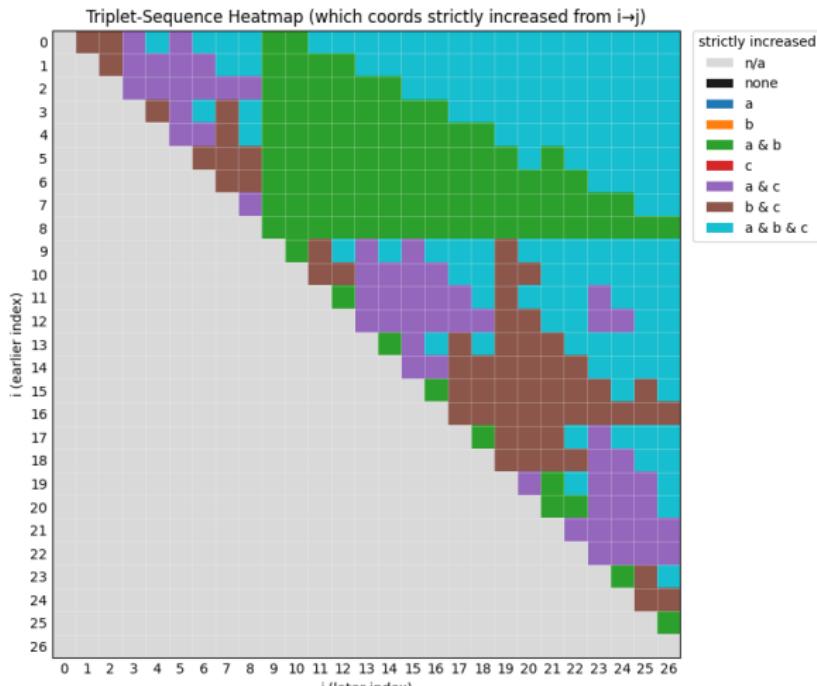
- A nice construction for perfect squares gives the lower bound
- $O(n^2)$ upper bound trivially follows from EST

Computing $F(n)$ values

- Computed exact values of $F(n)$ for $n \leq 9$
 - Motivation: any construction with length greater than $n^{3/2}$ can be generalised for larger n values and results in a lower bound improvement
- Verified that $F(9) = 27$ and computed all 874,776 optimal constructions with a C++ program
 - Motivation: help to generate and verify conjectures

Optimal Construction Example

- Example heatmap of a randomly chosen optimal $(3, 2)$ -sequence for $n = 9$



Conjectures and Conditional Results

- **Conditional result:** if one coordinate of a $(3, 2)$ -sequence is monotone increasing, then

$$F(n) \leq n^{3/2}.$$

- **Uniformity Conjecture:** if n is a perfect square, every optimal $(3, 2)$ -sequence uses each value in $[n]$ exactly \sqrt{n} times in each coordinate

Definition (Cut)

A sequence of triples x_1, x_2, \dots, x_L is said to have a *cut* in the k th coordinate if there exists an index $i \in \{1, \dots, L-1\}$ such that for all $j \leq i$ and $m > i$,

$$x_{j,k} < x_{m,k}.$$

- **Cut Conjecture:** every optimal $(3, 2)$ -sequence has a cut in at least one coordinate

Future Work

- Try to improve one of the bounds for $F(n)$
- Extend methods to higher dimensions

Thank You!

References

- P. Erdős and G. Szekeres.
A combinatorial problem in geometry.
Compositio Mathematica, 2:463–470, 1935.
- W. T. Gowers and J. Long.
The length of an s -increasing sequence of r -tuples.
Quarterly Journal of Mathematics, 2015.
- P.-S. Loh.
Directed paths: from Ramsey to Ruzsa and Szemerédi.
2014.
- G. Moshkovitz and A. Shapira.
Ramsey theory, integer partitions and a new proof of the Erdős–Szekeres theorem.
Advances in Mathematics, 245:269–311, 2013.
- E. Mulrenin, C. Pohoata, and D. Zakharov.
Color avoidance for monotone paths.
2024.
- I. Z. Ruzsa and E. Szemerédi.
Triple systems with no six points carrying three triangles.

Disclosure

AI Disclosure: I used ChatGPT to assist with LaTeX templating and to refine the clarity and phrasing of the text.