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Some famous problems

Theorem (Erdős–Szekeres)

For any positive integers A,B, every sequence of length AB + 1 contains
either an increasing subsequence of length A+ 1 or a decreasing
subsequence of length B + 1.

Happy Ending Problem (Erdős–Szekeres)

For every n ≥ 3, let N(n) be the smallest number such that any set of
N(n) points in the plane in general position contains n points in convex
position. (N(n) is known to be finite.)

Conjecture:
N(n) = 2n−2 + 1.

Motivation: analyse these in a more generic framework
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Monochromatic Monotone Path Problem

Definition

Let Nk(q, n) be the smallest integer N such that every q-coloring of the
edges of the complete k-uniform hypergraph on the ordered vertex set
{1, . . . ,N} contains a monochromatic monotone path of length n.

A monotone path is just a sequence i1 < i2 < · · · < im such that all
edges (ij , ij+1, ..., ij+k−1) have the same color

The classical EST corresponds to bounding N2(2, n)

EST is also transitive, but this does not change the answer here

For k > 3 it is unknown whether transitivity affects Nk(q, n)

General bounding techniques:

vertex labeling via down-sets
pigeonhole principle
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The General Monotone Sequence Problem

Definition

A sequence x1, . . . , xL with xi ∈ [n]r is s-increasing if for any i < j , at least
s coordinates satisfy xi ,k < xj ,k . Let L(r , s; n) denote the maximum
possible length L of such an s-increasing sequence.

Directly related to the hypergraph problem

e.g. s = 1, r = q gives a q-coloring interpretation for the 2-uniform
(graph) case
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The (3, 2)-Sequence Problem

We focus on F (n) = L(3, 2; n) (2 out of 3 coordinates strictly increase
between any two elements of the sequence)

Known asymptotic bounds:

Ω(n3/2) ≤ F (n) ≤ O(n2−ε) for some ε > 0

A nice construction for perfect squares gives the lower bound

O(n2) upper bound trivially follows from EST

Zoltán Molnár-Sáska ELTE Individual Project Supervisor: Gábor Damásdi 5/12



Computing F(n) values

Computed exact values of F (n) for n ≤ 9

Motivation: any construction with length greater than n3/2 can be
generalised for larger n values and results in a lower bound improvement

Verified that F (9) = 27 and computed all 874,776 optimal
constructions with a C++ program

Motivation: help to generate and verify conjectures
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Optimal Construction Example

Example heatmap of a randomly chosen optimal (3, 2)-sequence for
n = 9
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Conjectures and Conditional Results

Conditional result: if one coordinate of a (3, 2)-sequence is
monotone increasing, then

F (n) ≤ n3/2.

Uniformity Conjecture: if n is a perfect square, every optimal
(3, 2)-sequence uses each value in [n] exactly

√
n times in each

coordinate

Definition (Cut)

A sequence of triples x1, x2, . . . , xL is said to have a cut in the kth
coordinate if there exists an index i ∈ {1, . . . , L− 1} such that for all j ≤ i
and m > i ,

xj ,k < xm,k .

Cut Conjecture: every optimal (3, 2)-sequence has a cut in at least
one coordinate
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Future Work

Try to improve one of the bounds for F (n)

Extend methods to higher dimensions
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Thank You!
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2014.

G. Moshkovitz and A. Shapira.

Ramsey theory, integer partitions and a new proof of the Erdős–Szekeres theorem.
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Disclosure

AI Disclosure: I used ChatGPT to assist with LaTeX templating and to
refine the clarity and phrasing of the text.
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