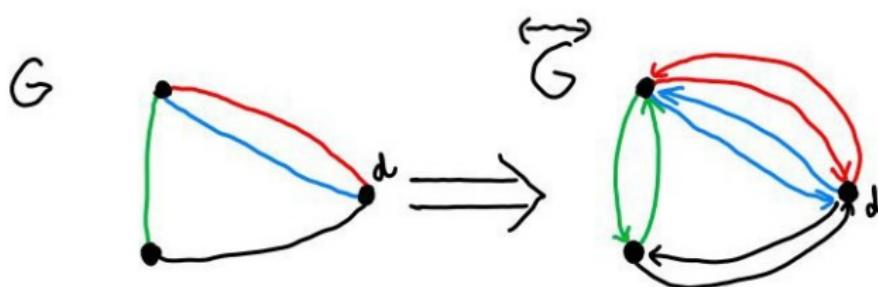


Application of arborescence packing

Presentation 1.


Lili Veronika Mohay
Advisor: Csaba Király

2025/26

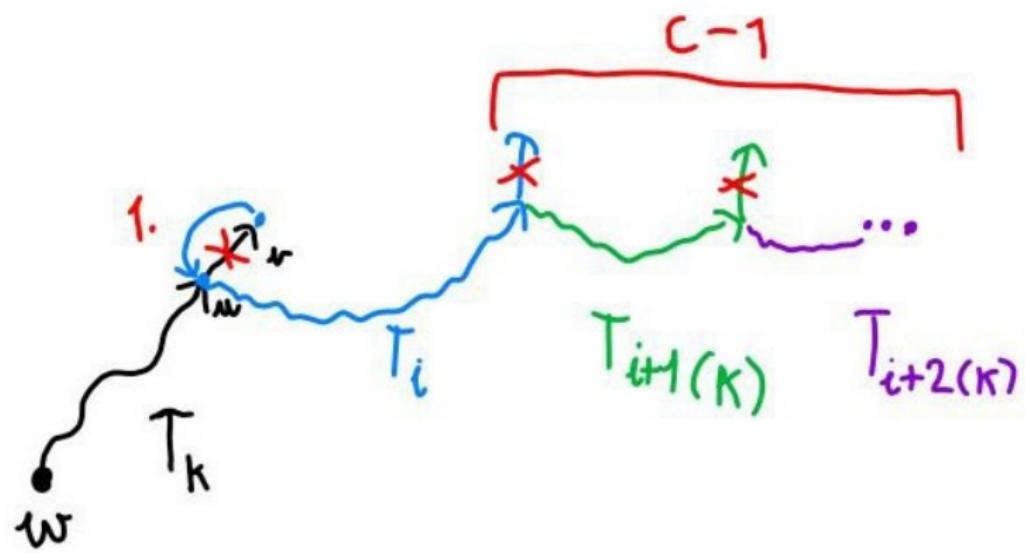
Beginning

- ▶ G is undirected,
 k -edge-connected multigraph
(router=vertex, link=edge)
- ▶ \overleftrightarrow{G} its directed copy
- ▶ d vertex is the destination,
goal: from every vertex the
packet has to be sent to d
(routing function)
- ▶ failed edges, f -resilient

- ▶ circular-in-arborescence
routing: Given
 $T = \{T_1, T_2, \dots, T_k\}$ set of k
 d -rooted arc-disjoint
spanning in-arborescences of
 \overleftrightarrow{G} . Start with T_1 . If the
packet hits a failed arc at a
vertex u , then reroute along
 $T_{(i+1) \bmod k}$.

Main results based on [1], [2]

- ▶ circular-in-arborescence routing is efficient for $k = 2, 3, 4$


Proposition

(Proposition 2.) For any undirected k -edge-connected graph G , with $k \geq 1$, and any vertex $d \in V$, in \overleftrightarrow{G} there exist k arc-disjoint spanning in-arborescences T_1, \dots, T_k rooted at d such that, if k is even (odd), $T_1, \dots, T_{\frac{k}{2}}$ ($T_1, \dots, T_{\lfloor \frac{k}{2} \rfloor}$) are edge-disjoint with each other and $T_{\frac{k}{2}+1}, \dots, T_k$ ($T_{\lfloor \frac{k}{2} \rfloor+1}, \dots, T_k$) are edge-disjoint with each other.

Theorem

(Theorem 1.) Assume that G is an undirected k -edge-connected graph and \overleftrightarrow{G} has k arc-disjoint in-arborescences: T_1, \dots, T_{k-1}, T_k . Furthermore, the circular-in-arborescence routing based on T_1, \dots, T_{k-1} is $c - 1$ -resilient ($k - 2$), where $c < k$. Then there exists routing which is c -resilient ($k - 1$).

Figure

Using of AI

During my work I only used AI (ChatGPT) as an English dictionary and I asked some Latex codes too.

References

- Marco Chiesa, Andrei Gurkov, Aleksander Madry, Slobodan Mitrovic, Ilya Nikolaevskiy, Aurojit Panda, Michael Schapira, and Scott Shenker.
Exploring the limits of static resilient routing.
In *Proc. IEEE INFOCOM*, 2016.
- Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrović, Andrei Gurkov, Aleksander Madry, Michael Schapira, and Scott Shenker.
On the resiliency of static forwarding tables.
IEEE/ACM Transactions on Networking, 25(2):1133–1146, 2016.

Thank You for Your attention!