

The activity of the stochastic chip-firing game

Domonkos Koleszár

Supervisor: Lilla Tóthmérész

Eötvös Loránd University

8 January 2026

Summary

1 Introduction

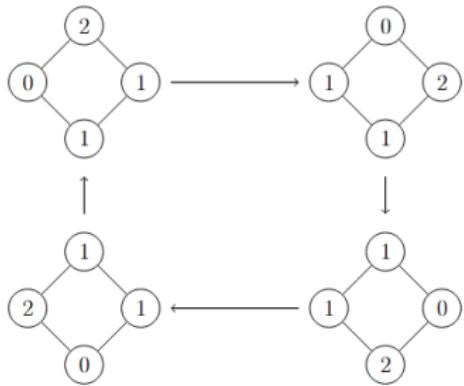
2 Activity of the stochastic chip-firing game

3 Stochastic activity of the path graph

4 Further plans

Introduction

- Dynamics of the game
- Parallel chip-firing
- Asynchronous chip-firing
- Stochastic chip-firing



Activity of the stochastic chip-firing game

Definition

A vertex is **active**, if it has at least as many chips as its degree.

Activity of the stochastic chip-firing game

For a G graph and x initial chip-distribution, the activity of the stochastic chip-firing game is the expected value of the average number of active vertices, that is, $A_G(x) = \lim_{k \rightarrow \infty} \frac{1}{k} E(A_k(x))$, where $A_k(x)$ is the random variable denoting the total number of active vertices in the first k steps of the game started from the chip configuration x .

Stochastic chip-firing game on trees with n vertices and $n - 1$ chips

Proposition

The activity of the stochastic chip-firing game on a given tree does not depend on the initial chip configuration, only on the number of chips.

Star

The activity of the stochastic chip-firing game with $n - 1$ chips on a star with n vertices is always

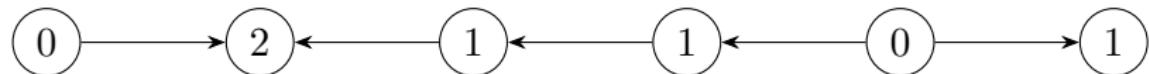
$$A_{S_n} = \frac{n^2 - n + 2}{2n}.$$

Conjecture for path graphs

The activity of the stochastic chip-firing game with $n - 1$ chips on a path with n vertices is always $A_{P_n} = \frac{n^2 + n - 4}{4n - 6}$.

Stochastic activity of the path graph

- Recurrent chip configurations: arbitrary orientation of the edges of the tree, for each vertex: number of chips = indegree $\implies 2^m$ recurrent states for the path graph with m chips



- Aperiodic, irreducible Markov-chain on the recurrent states of chip configurations \implies stationary vector π
- Activity $= \pi \cdot a$, where a denotes the number of active vertices for the 2^m states

Stationary Distribution

Coordinate in the Stationary Distribution	Polynomial in m before normalization
1	1
2	$\binom{m}{1}$
3	$2(m - 1)$
4	$\binom{m}{2}$
5	$2(m - 2)$
6	$(m - 2)(m + 1)$
7	$(m - 2)(m - 1)$
8	$\binom{m}{3}$
9	$2(m - 3)$

Table 1: Polynomials of the Coordinates Expressed in m

Another way to calculate the activity

- Activity = sum of the activities of the vertices
- Conjectures for the activity of the nodes
 - Inner vertices: $\frac{C_m + (m-1)C_{m-1}}{\binom{2m}{m}}$, where C_m denotes the m -th Catalan-number
 - The two vertices at the end of the path graph: $\frac{\binom{2m-2}{m} \cdot \frac{m+4}{m+1}}{\binom{2m}{n}}$
- In stationary distribution, every vertex has the same probability of firing (so $\frac{1}{n}$)

Further plans

- Finishing the proof for the path graph
- Another (much more complex) conjecture left to prove: the activity is increasing on a poset of trees on n vertices

Thank you for your kind attention!