

Optimization problems in temporal graphs

Márk Hunor Juhász

Supervisor: Péter Madarasi

Project Work I.

2026. 01. 09.

Temporal graph

A temporal graph $\mathcal{G} = (G, \lambda)$ is a pair (G, λ) , where $G = (V, E)$ is an underlying (static) graph and $\lambda : E \rightarrow 2^{\mathbb{N}} \setminus \{\emptyset\}$ is a time-labeling function that specifies which edge is active at what time, that is, an edge $e \in E$ is active at time $\tau \in \mathbb{N}$ if and only if $\tau \in \lambda(e)$. If e is active at time τ , then we call the pair (e, τ) a time edge and we say that e appears at time τ . The lifetime $\mathcal{T}(\mathcal{G}) < \infty$ of a temporal graph is the biggest time-label assigned to an edge, that is, $\mathcal{T}(\mathcal{G}) = \max\{\tau \in \lambda(e) \mid e \in E\}$.

Δ -matching

Given a non-negative integer $\Delta \in \mathbb{N}$, we call two time edges (e, τ) and (e', τ') Δ -independent if the edges e, e' do not share an endpoint or their time-labels τ, τ' are at least Δ time units apart, that is, $|\tau - \tau'| \geq \Delta$. A Δ -matching of a temporal graph \mathcal{G} is a set M of pairwise Δ -independent time edges of \mathcal{G} .

Definitions

γ -matching

Given a temporal graph $\mathcal{G} = (G, \lambda)$, $G = (V, E)$, an edge of the underlying graph $e \in E$ and a non-negative integer $\gamma \in \mathbb{N}$, the γ -edge of e at time τ is the set $\{(e, \tau') \mid \tau' \in \{\tau, \dots, \tau + \gamma - 1\}\}$, where $\{\tau, \dots, \tau + \gamma - 1\} \subseteq \lambda(e)$. We denote this by $\Gamma_\gamma(e, \tau)$. We say that two γ -edges $\Gamma_\gamma(e, \tau)$ and $\Gamma_\gamma(e', \tau')$ are γ -independent if the edges e, e' do not share an endpoint or $\{\tau, \dots, \tau + \gamma - 1\}$ and $\{\tau', \dots, \tau' + \gamma - 1\}$ are disjoint. A γ -matching of a temporal graph \mathcal{G} is a set M of pairwise independent γ -edges.

d -matching

In the bipartite graph $G = (S, T, E)$, M is a d -matching if we obtain a matching by restricting M to any d consecutive nodes from S . Here, restricting M to a set of nodes $X \subseteq S$ means that we only consider the edges in M , which are induced by X and T .

Theorem

The maximum Δ -matching problem is NP-hard even if $\Delta = 2$, the underlying graph of the input temporal graph is a tree and every edge appears at most twice.

Theorem

The maximum Δ -matching problem can be solved in polynomial time if the underlying graph $G = (V, E)$ of the input temporal graph $\mathcal{G} = (G, \lambda)$ is a tree, and every edge appears at most once.

Theorem

For every $0 < \varepsilon < 1$, the maximum Δ -matching problem admits an $O(\mathcal{T}n^2(4\Delta/\varepsilon)^{\Delta/\varepsilon})$ -time $(1 - \varepsilon)$ -approximation algorithm if the underlying graph G of the input temporal graph \mathcal{G} is a tree and $\Delta \in \mathbb{Z}_+$ is a positive constant.

Theorem

Consider the maximum Δ -matching problem, where the underlying graph $G = (V, E)$ of the input temporal graph $\mathcal{G} = (G, \lambda)$ is a tree. If there exists an optimal solution M^ for which the sets $M_v^* = \{(e, t) \in M^* \mid e \text{ is incident to } v\}$ are of size at most K for every $v \in V$, then the problem can be solved in $O(n^2(KT^2)^K)$ time.*

Corollary

Maximum Δ -matching can be solved in $O(n^2K^{3K})$ time if the underlying graph $G = (V, E)$ of the input temporal graph $\mathcal{G} = (G, \lambda)$ is a tree, and $T \leq K$.

Corollary

Maximum Δ -matching can be solved in $O(n^2 K^{3K})$ time if the underlying graph $G = (V, E)$ of the input temporal graph $\mathcal{G} = (G, \lambda)$ is a tree, and $\mathcal{T}/\Delta \leq K$.

Theorem

Consider the maximum Δ -matching problem, where the underlying graph $G = (V, E)$ of the input temporal graph $\mathcal{G} = (G, \lambda)$ is a tree. Let N denote the size of the input ($N = O(|E|\mathcal{T}) = O(|V|\mathcal{T})$). If $\sum_{u \in \Gamma(v)} |\lambda(uv)| = O(\log N)$ for every $v \in V$, where $\Gamma(v)$ denotes the set of neighbors of v , then the problem can be solved in polynomial time.

Theorem

For every $0 < \varepsilon < 1$, the maximum Δ -matching problem admits an $O(Tn^2(1/\varepsilon)^{3/\varepsilon})$ -time $(1 - \varepsilon)$ -approximation algorithm if the underlying graph G of the input temporal graph \mathcal{G} is a tree.

Corollary

There is an EPTAS algorithm for the maximum γ -matching problem if the underlying graph G of the input temporal graph \mathcal{G} is a tree.

New results: γ - and d -matchings

Theorem

Consider the maximum Δ -matching problem, where the underlying graph is $G = (V, E)$, the input temporal graph is $\mathcal{G} = (G, \lambda)$, and for every edge $e \in E$, $|x - y| > \Delta$ holds for every $x, y \in \lambda(e)$. In this case, the maximum Δ -matching problem can be reduced to the maximum γ -matching problem.

Corollary

The maximum γ -matching problem is NP-hard, even if the underlying graph of the temporal graph is a tree.

Theorem

The maximum d -matching problem can be solved in polynomial time if the input graph G is a tree.

- George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche. „*Computing maximum matchings in temporal graphs*”. In: *Journal of Computer and System Sciences* 137 (2023), pp. 1–19.
- Péter Madarasi. „*Matchings under distance constraints I.*” In: *Annals of Operations Research* 305 (2021), pp. 137–161.
- Péter Madarasi. „*Matchings under distance constraints II.*” In: *Annals of Operations Research* 332 (2024), pp. 303–327.

Where did I use AI?

I used ChatGPT to translate my Hungarian sentences to English.

Thank you for your attention!