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Motivation

quantifying uncertainty estimates for predictions
produces prediction sets that are guaranteed to contain the true
data with a preset probability
range of likely outcomes instead of a single estimate



Theoretical Framework

Consider the data in the form of ordered pairs (xi , yi ) called examples;
zi = (xi , yi ). We set

Z := X × Y.

Examples are chosen independently from some probability distribution
P on Z.

Definition
The exchangeability of P means that for every positive integer n,
every permutation π of {1, . . . , n}, and every measurable set E ⊆
Zn,

P
(
(z1, . . . , zn) ∈ E

)
= P

(
(zπ(1), . . . , zπ(n)) ∈ E

)
.

Definition
A simple predictor is a measurable function

D : Z∗ ×X → Y.



Theoratical Framework
additional inputs: α ∈ (0, 1), called the significance level; 1 − α is
the confidence level
algorithm Γ outputs a subset of Y:

Γα(x1, y1, . . . , xn−1, yn−1, xn) ⊆ Y.

If α1 ≥ α2,

Γα2(x1, . . . , yn−1, xn) ⊇ Γα1(x1, . . . , yn−1, xn). (1)

Definition
A confidence predictor is a measurable function

Γ : (0, 1)×Z∗ ×X → 2Y

that satisfies the monotonicity condition (1) for all significance
levels α1 ≥ α2, all n ∈ Z+, and all incomplete data sequences
(x1, y1, . . . , xn−1, yn−1, xn).



Theoretical Framework
Definition
A bag or multiset of size n ∈ N is a collection z1, . . . , zn of n elements
from a measurable space Z, where order is irrelevant and repetitions
are allowed. We denote by Z(n) the set of all bags of size n, and by
Z(∗) =

⋃
n≥1 Z(n) the set of all finite bags.

Definition
A nonconformity measure is a measurable function

A : Z(∗) ×Z → R

that assigns to each bag of old examples and each new example
z ∈ Z a score A(z1, . . . , zn, z) indicating how different z is from
z1, . . . , zn.

For regression problems: A(z1, . . . , zn, (x , y)) = |y − ŷ(x)|



Quantiles
Suppose we have a sequence Yi ∈ R, i = 1, . . . , n of real-valued
response values and a significance level α. Our goal is to find a
one-sided prediction interval Cn = (−∞, qn] such that

P
(
Yn+1 ≤ qn

)
≥ 1 − α.

P(Yn+1 is among the (1 − α)(n + 1) smallest of
Y1, . . . ,Yn+1) ≥ 1 − α.

This is equivalent to

P(Yn+1 is among the (1 − α)(n + 1) smallest of
Y1, . . . ,Yn) ≥ 1 − α.

Accordingly, define

qn = ⌈(1 − α)(n + 1)⌉-th smallest of Y1, . . . ,Yn⌉.



Regression

Let fn be any point predictor trained on the n samples. Train a
nonconformity score, for example, we define residuals:

Ri = |Yi − fn(Xi )|, i = 1, . . . , n,

and the quantile

qn = ⌈(1 − α)(n + 1)⌉-th smallest of R1, . . . ,Rn.

Then the naive prediction set is

Cn(x) =
[
fn(x)− qn, fn(x) + qn

]
.



Split Conformal prediction algoritmn

Split the training set into a proper training set D1 of size n1 and
a calibration set D2 of size n2

Fit predictor fn1 using the data in D1

For each i ∈ D2, compute

Ri = |Yi − fn1(Xi )|

Let qn2 be the ⌈(1−α)(n2 + 1)⌉-th smallest value among {Ri :
i ∈ D2}:

qn2 = R(⌈(1−α)(n2+1)⌉)

For any new input x , define

Cn(x) =
[
fn1(x)− qn2 , fn1(x) + qn2

]



Split conformal prediction
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Split Conformal Prediction

Figure: 90% coverage

n = 200 data points generated, xi ∼ Uniform(0, 6)

f (x) = 0.9 sin(1.5x)− 0.6

εi ∼ N (0, 0.252)

yi = f (xi ) + εi



Method comparison

the empirical coverage over a test set {(Xj ,Yj)}mj=1 is

1
m

m∑
j=1

1{ |Yj − fn(Xj)| ≤ qn }.

the width of prediction interval for the i-th observation:

Wi = ŷupper
i − ŷ lower

i

where
ŷ lower
i = ŷi − q1−α, ŷupper

i = ŷi + q1−α.

Ci = [ŷi − q1−α, ŷi + q1−α]

Thus, the (constant) interval width is:

W = 2q1−α



Method comparison
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AI use

I used ChatGPT in my report

to generate parts of the code for plots
for grammatical checking
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