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Motivation

@ quantifying uncertainty estimates for predictions

@ produces prediction sets that are guaranteed to contain the true
data with a preset probability

@ range of likely outcomes instead of a single estimate



Theoretical Framework

Consider the data in the form of ordered pairs (x;, y;) called examples;
Zi = (X,',y,'). We set
Z:=Xx).

Examples are chosen independently from some probability distribution
Pon Z.

Definition

The exchangeability of P means that for every positive integer n,
every permutation 7 of {1,...,n}, and every measurable set E C
Z"

P((Zl, 00 ¢ ,Zn) € E) = ]P’((Zﬂ.(l), 500 ,Zﬂ(n)) € E)

Definition
A simple predictor is a measurable function

D:Z"xX =Y.



Theoratical Framework

additional inputs: « € (0,1), called the significance level, 1 — « is
the confidence level
algorithm I outputs a subset of Y:

ra(le.yla e 7Xn—15.yn—laXn) g y

If oy > ao,
F2(x1, ey Yne1,%n) 2 T(X1, oy Y1, Xn)- (1)

Definition
A confidence predictor is a measurable function

F:(0,1) x 2* x X — 2

that satisfies the monotonicity condition (1) for all significance
levels ac; > ap, all n € ZT, and all incomplete data sequences
(le}/17~-'aXn—17)/n—17Xn)-



Theoretical Framework

Definition

A bag or multiset of size n € N is a collection zi, . .., z, of n elements
from a measurable space Z, where order is irrelevant and repetitions
are allowed. We denote by Z(" the set of all bags of size n, and by
Z0) =, >, Z(" the set of all finite bags.

Definition
A nonconformity measure is a measurable function
A: 20 x 2 R

that assigns to each bag of old examples and each new example
z € Z a score A(zi,...,zn,2z) indicating how different z is from

Z1,---4,2n.

For regression problems: A(zi,...,zn, (x,y)) = |y — y(x)|



Quantiles
Suppose we have a sequence Y; € R, i = 1,...,n of real-valued
response values and a significance level . Our goal is to find a
one-sided prediction interval C, = (—o0, g, such that

IP>(Yn—|—1 < qn) >1-a.

P(Yp41 is among the (1 — a)(n+ 1) smallest of
Y]_,...,Yn+1) Z 1—a.

This is equivalent to

P(Yp41 is among the (1 — a)(n+ 1) smallest of
Yi,....Yn) > 1-a.

Accordingly, define
gn = [(1 — a)(n+ 1)]-th smallest of Y1,..., Yy].



Regression

Let f, be any point predictor trained on the n samples.
nonconformity score, for example, we define residuals:

R,':’Y,'—fn(X,')|, izl,...,n,

and the quantile

gn = [(1 — a)(n+ 1)]-th smallest of Ry, ..., R,.

Then the naive prediction set is

Ca(x) = [fa(x) = qn, falx) + Gn ]

Train a



Split Conformal prediction algoritmn

Split the training set into a proper training set D; of size n; and
a calibration set D, of size n

Fit predictor f,, using the data in D

For each i € D,, compute

Ri = 1Yi — £y (Xi)|

Let gn, be the [(1 — «)(n2 + 1)]-th smallest value among {R; :
i € Dz}:
Gnz = R([(1-0)(m+1)])

For any new input x, define

CH(X) = [fnl(X) — Qnys fnl(X) + qnz]



Split conformal prediction

Split Conformal Prediction

Figure: 90% coverage

n = 200 data points generated, x; ~ Uniform(0, 6)

f(x) = 0.9sin(1.5x) — 0.6

ei ~ N(0, 0.252)

yi = f(x;) +¢i



Method comparison

the empirical coverage over a test set {(X], Y;)}; is

the width of prediction interval for the i-th observation:
W, = }A/uPper _ y!ower
r— Jj I

where
~lower aupper

Vo =Y —qi-a, ¥ =Yit+qi-a
Ci=1[0i— qi—as Ji + q1-0]
)

Thus, the (constant) interval width is:

W =2qg1-a



Method comparison

Split Conformal Coverage by Method
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Al use

| used ChatGPT in my report

@ to generate parts of the code for plots

e for grammatical checking
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