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Reminder

Last semester, we have investigated the following problem for u : Ω → R:
−div(A(x , u) · ∇u) + q(x , u)u = f ; in Ω

u
∣∣
ΓD

= 0;

(A(x , u)∇u · ν + pu)
∣∣
ΓN

= g ,

and introduced an iteration via
−div(A(x , u(n)) · ∇u(n+1)) + q(x , u(n))u(n+1) = f ; in Ω

u(n+1)
∣∣
ΓD

= 0;

(A(x , u(n))∇u(n+1) · ν + pu(n+1))
∣∣
ΓN

= g .

This leads to a series of linear PDEs, which can be solved numerically.
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FEM for the Linearized PDE


−div(A(x , u(n)) · ∇u(n+1)) + q(x , u(n))u(n+1) = f ; in Ω

u(n+1)
∣∣
ΓD

= 0;

(A(x , u(n))∇u(n+1) · ν + pu(n+1))
∣∣
ΓN

= g .

Take the weak formulation∫
Ω

A(x , u(n))·∇u(n+1)·∇v+

∫
Ω

q(x , u(n))u(n+1)v =

∫
Ω

fv+

∫
∂Ω

pv ∀ v ∈ H1
D(Ω),

Then some subspace Vh ⊂ H1
D(Ω), and define for the basis functions φj , φi ∈ Vh

the matrix

An :=

∫
Ω

A(x , u(n)) · ∇φj · ∇φi +

∫
Ω

q(x , u(n))φjφi

and the vector

bn :=

∫
Ω

f φi +

∫
∂Ω

pφi .

Then we just have to solve the linear equation

Anc = bn.
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Nonnegativity Principle for a Basic Domain


∂tu − div (A(u)∇u) = f in Ω

u(x , 0) = 0 ∀x ∈ Ω,

u
∣∣
ΓD×R+ = 0,

A(u)∂νu + α(u − u0)
∣∣
ΓN×R+ = 0.

First, we describe time layers tj = j · τ . We freeze the relevant coefficents, and
apply a finite difference scheme for the time derivative:

1

τ
(u(j+1) − u(j))− div

(
A(u(j))∇u(j+1)

)
= f ,

so the weak formulation is∫
Ω

A(u(j))·∇uj+1 ·∇v+

∫
Ω

1

τ
u(j+1)v+

∫
ΓN

αu(j+1)v =

∫
Ω

fv+

∫
Ω

1

τ
u(j)v+

∫
ΓN

u0v .
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The Domain with Boundary Conditions
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The Discretized Domain
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Discrete Nonnegativity Principle

How can we guarantee that the nonnegativity principle holds for the numerical
solution, and how practical are the conditions?
If we are given a time step τ , then we have to have a mesh with mesh size of at
most

hopt =
µ0

α
2
+
√(

α
2

)2
+ µ0

3τ

,

conversely, if h mesh size is given, then

τopt :=
1

3
µ0

((
h
µ0

− α
2

)2
−
(
α
2

)2)
is the theoretical minimum temporal step.

This is not a condition that is only theoretically interesting!
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Solution, h = 0.1, τ = 0.01
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Solution, h = 0.1, τ = 0.001
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Evolution of the errors, h = 0.1, τ = 0.01
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Coarse Discretization of an Arbitrary Domain
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Fine Discretization of an Arbitrary Domain
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Domain with a Hole
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Wind Tunnel with Objects
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Michaelis-Menten Equation in a Cell


∂tu − µ0∆u +

u

1 + εu
= f u : Ω× R+ → R,

u(x , 0) = 0 ∀ x ∈ Ω,

u
∣∣
∂Ω×R+ = 0.

Here, we have the estimates

τopt :=
1

12 cos(α0)·µ0
h0

− 1
,

and

hopt :=

(
12 cos(α0) · µ0

1 + 1
τ

)1/2

,

where h0 and α0 denote the largest side and angle in the triangulation respec-
tively.
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Solution with h = 0.06, τ = 0.2
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Solution with h = 0.06, τ = 0.1
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Evolution of the Errors, h = 0.06, τ = 0.2
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Evolution of the Errors, h = 0.06, τ = 0.1
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AIML

Aluĺırott Sike András nyilatkozom, hogy a projektmunka elkésźıtése során AI/ML
alapú eszközöket nem használtam.
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