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Reminder

Last semester, we have investigated the following problem for u: Q — R:

—div(A(x,u) - Vu) + g(x,u)u=f; inQ
u‘rD =0
(ACx, u)Vu- v+ pu)|, =g,

and introduced an iteration via

—div(A(x, u') - V") 4 g(x, )" = f; in Q
n+1 ’ 0
rD '

(A(x, ut)VumD) Ly 4 pu("+1))|rN =g

This leads to a series of linear PDEs, which can be solved numerically.
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FEM for the Linearized PDE

—div(A(x, u) - V"D 4 g(x, )Y = £, in Q
u("+1)| =0;
oo

(AC a) VU -y pu )|~ g,
Take the weak formulation

/A(X, u(n)).vu(n+1),vv+/ q(x7 u(n))u(n+1)v = / fv+/ pv YVve Hé(fZ)7
Q Q Q o

Then some subspace Vi, C H5(R), and define for the basis functions ¢;, ¢; € Vi,
the matrix

A, ::/A(x, u("))~V<pj~V<pi+/Cl(X7 u™)pjpi
Q Q

b, ZZ/fQD,'—F/ ppi.
Q o0

Then we just have to solve the linear equation
A,c = b,.

and the vector
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Nonnegativity Principle for a Basic Domain

Oru —div(A(u)Vu) = f in Q
u(x,0)=0 Vx € Q,
u{erRfr =0,

A(u)dyu + ou — uo)||_NXIR+ =0.

First, we describe time layers t; = j - 7. We freeze the relevant coefficents, and
apply a finite difference scheme for the time derivative:

l(u(jﬂ) — ug)) — div (A(u(j))Vu(jH)) =f,
pu

so the weak formulation is

/A(u(j))~Vuj+l~Vv+/ 1u("-H)VJr/ au0+1)v:/fv+/ lu(j)er/ upVv.
Q T Iy Q T Iy
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The Domain with Boundary Conditions
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The Discretized Domain
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Discrete Nonnegativity Principle

How can we guarantee that the nonnegativity principle holds for the numerical
solution, and how practical are the conditions?
If we are given a time step 7, then we have to have a mesh with mesh size of at

most "
0
hopt e

conversely, if h mesh size is given, then

(@)

is the theoretical minimum temporal step.

[y

This is not a condition that is only theoretically interesting!
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Solution, h=0.1, 7 = 0.01
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Solution, h = 0.1, 7 = 0.001
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Coarse Discretization of an Arbitrary Domain
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Fine Discretization of an Arbitrary Domain
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Domain with a Hole
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Wind Tunnel with Objects
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Michaelis-Menten Equation in a Cell

u
Oru — polAu + Treu =f u:QxR" >R,
u(x,0)=0 vV x € Q,
“|anR+ =0.
Here, we have the estimates
. 1
Topt = 12cos(ag)-po 17

ho

1/2
) 12 cos(av) - po
hopt = ? ;

where hy and «g denote the largest side and angle in the triangulation respec-
tively.

and
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Solution with h = 0.06, 7 = 0.2
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Solution with h =0.06, 7 = 0.1
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Alulirott Sike Andrés nyilatkozom, hogy a projektmunka elkészitése sordn Al/ML
alapu eszkézoket nem haszndltam.
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