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Motivation

Generative models
Models that create i.i.d. samples from a distribution given some
initial parameters:

» Diffusion models, ChatGPT
» Inverse cumulative distribution functions
» ARIMA models (for multiple trajectories)

» Scientific experiments

The Goal:
Given an original sample S estimate the “parameters” that
could have generated it.



Motivation

Standard methods for parameter estimation

> Maximum likelihood estimation

» Stochastic gradient descent

> Assumes knowledge about the model structure
» Provides only point estimates

> Asymptotic guarantees for confidence regions
Why bother?

» What if the data is generated from a black box?
Instead: Distribution-free methods

» Different point estimates could lead to different
interpretations (Rashomon-effect)
Instead: Confidence regions

» Asymptotic guarantees don't work well for small sample sizes
Instead: Exact guarantees for finite samples



Motivation

Assumptions

» There exists a “parameter” space © containing 6*, that
parametrizes the distribution from which the original
sample S(© is obtained from

» Instead of assuming the parametrization of the data
generation process (e.g., knowing the likelihood function)

» There is a black box, that can generate i.i.d. samples
Sél), e Sém) from Py given any parameter 6.

» The seed for the black box can be fixed.




Estimating confidence regions

The Resampling framework

» Given a parameter 6

» 1. Generate m — 1 alternative samples from Py

> 2. Assign a real number to each sample based on 6 called its
reference variable: Zéi) = T(S(gi),é?)

» 3. Rank the samples based on the reference variables, and
denote the rank of the original sample with

m—1

(m) _
Ry =1+ H{zgkzg’)}
i=1

Theorem (Csaji and Tamas, 2019)

PO*e{fcO|p< Rgm) < q}) = &LtL if there is almost surely
a strict ordering of the reference variables



Reference variables
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Reference variable Zéi) = T(Sgi),e) depends on # explicitly;
e.g., Maximum Likelihood based reference variable:
2 = IVe£(6, S|P

r

.

Introducing a seed component Zéi) = T(S(gi),e,{,-);
e.g., MMD-based reference variable:

. —— . .
2 = N (s, 5§

J

—
Where MMD is an unbiased for the Maximum Mean Discrepancy

p(x)

— @ RKHS embedding of Q
T @ RKHS embedding of P

X

Reproducing Kernel Hilbert Space



Examples for confidence regions (Gamma distribution)
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(c) MMD reference variable (d) MMD Rank
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Point estimation: The smoothed rank

Idea:

e argmin fR(gm)
0cO

Problem:
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Point estimation: The smoothed rank

Idea:
b e argmin ngm)
0O
Problem:
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(a) Not fixing the seed (b) Fixing the seed



Point estimation: The smoothed rank

Idea:

[ b e argmin Rgm)
0O

Solution:

(a) Not fixing the seed (b) Fixing the seed

(c) Smoothed rank



Optimization

[ Stochastic optimization of the smoothed rank (SPSA)

(a) Gaussian distribution (a) Gaussian Mixture Model



Asymptotic properties in the number of resamplings

Definition
The normalised rank can be defined as

m—1
(m _ 1 ,
Ry = —~ (1 + ; H{Zé,)<zé0)}>

Proposition

lim IR( m) — (Z( )) where Fz, denotes the CDF of Z()
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(a) Increasing the n.o. resamplings (b) Distribution of Rank



Convergence rate

p
Proposition
A finite sample bound based on the concentration inequality of
Dvoretzky-Kiefer-Wolfowitz (quantitative Glivenko-Cantelli):

P(|RS™ = Fz, (Z3)| > €) < 2exp (—2me? + 4¢)

1073




Uniform convergence

Question:
Is it possible to guarantee a uniform convergence over ©7

Definition (Alon et al., 1997)

A set of X — R functions H is Uniform Glivenco-Cantelli (UGC) if
for every € > 0 it holds that
> 6) =0

where {x;} are sampled i.i.d. from the distribution .

03 00— )

lim sup P ( sup sup
I=oopemy  \m>1 fek

Theorem (Alon et al., 1997)

Let H be a set of X— [0, 1] functions. Then H is UGC if and only
if the V. -dimension of JH is finite for every v > 0



Uniform convergence

[ Theorem
Let S©) pe a fixed original sample. If there exists a set of
© — R functions G such that Zg(f? € §G for every £ € Q, and
Pdim(§) < oo, then

5(°)> o

m 0
2 — F (zg,g)' > e

lim sup P [ sup sup
I=00 gco m>1 £€Q
|\

p
Examples
» Non-randomized reference variables

» ML-based reference variable from the exponential
distribution family (across the sample space)

» MMD-based reference variable using a finite dimensional
RKHS and a fixed seed (across the sample space)




Uniform convergence

Uniform convergence for ML-based reference variables, in a
single parameter exponential family, across the sample space

mean
maximum

—— minimum

Error




Uniform convergence

Some useful tools to prove finite pseudo-dimension

Theorem (Anthony and Bartlett, 1999)

If H is a vector space of X — R functions, then
Pdim(H) = dim(%)

Lemma (Anthony and Bartlett, 1999)

If g : R—R is a non-decreasing function, then for
G ={g(f(x))|f € H} it holds that Pdim(§) < Pdim(XH)

Lemma

Let g be any W — X function. Then for G = {h(g(v))|h € H}
it holds that Pdim(G) < Pdim(3).




Asymptotic behaviour in sample size

Assumption: S0 = (x1, ..., Xn) contains i.i.d. instances from Py.

( Definition
A reference variable is consistent, if it holds that
im Zg(i) _ 0 if x; ~ Py i.i.d.
=Y ceRLU{o0} else

almost surely for any 6 € © parameter and i =0, ..., m — 1.
\

( Proposition
If {Zg(')} are consistent, then the normalised rank ngm)
constructed from it has the following properties:

> 1) Rgm)—ﬂ a.s. as n— oo if Py« # Py.

> 11) R™ % U,[0,1] as n—s oo if Pge = Py where Up[0,1]

is the discrete uniform distribution over {%, e ’"Tfl, 1}.




Asymptotic behaviour in sample size

Proposition
MMD-based reference variables using characteristic kernels are

consistent (e.g., Gaussian, Laplace kernels)
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Conclusions

[ Conclusions
Benefits of the proposed framework:
» Exact confidence regions for finite samples
» Distribution free
» Point estimates

» Asymptotic guarantees
&

p
Future directions
» Rashomon sets

» Fine-tuning diffusion models




Al Declaration

Throughout this project, Al tools (in this case ChatGPT) were
used for the following purposes:

» To assist with writing the code for the simulations and for
creating the figures containing the results of the simulations.

» To find the original sources of some theorems that were
borrowed from textbooks.
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