

The Prize-Collecting Steiner Forest Problem

Kiss Bendegúz
Supervisor: Király Tamás

January 2026

- **Work during the semester:**
 - Improving and simplifying the implementation of the approximation algorithm
 - Studying and implementing a new heuristic approach because the previous one gave mostly trivial solutions, usually minimum spanning trees
- **PCSF:** finding a forest in a graph minimizes edge costs and penalties for disconnected node pairs.
- Generalizes the Prize-Collecting Steiner Tree Problem (PCST).

Problem Definition

Given:

- Undirected graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{R}^+$
- Penalty function $\pi : V \times V \rightarrow \mathbb{R}^+$
- $\pi_{ij} = 0$, if $i \geq j$

Goal: Find a forest F minimizing:

$$\sum_{e \in F} c_e + \sum_{(i,j) \in Q} \pi_{ij}$$

where Q is the set of disconnected node pairs in F .

3-Approximation Algorithm

- ① Starting with each node as an active set
- ② These active sets start “coloring” their outgoing edges.
- ③ When an edge is fully colored (the coloring duration equals its cost), we add it to the forest.
- ④ We also “color” node pairs: if the color reaches their penalty, they become tight. This coloring procedure is much more complicated and difficult to imagine visually.
- ⑤ Sets that cut only tight pairs are removed from active sets. We “deactivate” them.
- ⑥ Repeat until no active sets remain.
- ⑦ Finally, we keep only those edges, which we use to connect the non-tight pairs.

2-Approximation Algorithm

- ① Run the 3-approximation algorithm on the original graph
- ② Collect the node pairs for which we paid penalties
- ③ We run the algorithm again with $\pi_{ij} = 0$ for those pairs
- ④ Evaluate the output by the original penalties
- ⑤ Return the better of the two solutions

Application in biological networks

- We examine a disease and gain as much biological information as possible at experimental cost.
- Interactomes: graphs representing biological networks
- Nodes represent biomolecules, edges represent interactions.
- Edge costs are the experimental cost (time, substance, etc.) of checking an interaction
- Penalties can be imagined as information loss if we ignore a protein interaction.
- To find the necessary interactions, we can solve a PCSF problem with the given edge costs and penalties

New heuristic Algorithm

Three main phases

- Preparation phase:
 - terminal nodes with at least one positive penalty
 - D matrix, containing the cost of the shortest paths between each node pair
- Clustering phase:
 - We start each cluster with a random terminal node
 - Add an u node to a cluster represented by v if $\alpha \cdot D_{u,v} \leq \pi_{u,v}$
 - Merge two clusters if their union spans a tree with less weight
- MST phase:
 - Make the metric closure of the clusters
 - Add an r root node to G and connect it to every node using an edge with ω cost
 - Find an MST in the modified graph
 - If an uv edge is in the MST interpolate the $u - v$ path in G
 - Find an MST or minimum spanning forest

About implementation

- Language: Python
- Efficient data structure for coloring durations
- Used built-in functions from `networkx` library for:
 - Max-flow computation
 - Shortest paths
 - Deciding the connectivity of two nodes, etc.

- Testing on different random graph models: Erdős-Rényi, Barabási-Albert
- Parameters for $n = 100$
 - Edge costs: Uniform integers from [1, 20]
 - Penalties on 10% of the node pairs, penalty value = 1
 - Erdős-Rényi: $p = \frac{1}{10}$
 - Barabási-Albert $m = 2$

Results Summary

n	model	1st approx cost	1st approx penalty	2nd approx cost	2nd approx penalty	Approx runtimes	Heuristic cost	Heuristic penalty	Heuristic runtime
20	barabasi-albert	24	16.0	8	26.0	(3.11, 2.43)	0	33.0	0.19
20	barabasi-albert	35	6.0	35	6.0	(2.31, 3.17)	23	15.0	0.04
20	barabasi-albert	42	4.0	42	4.0	(3.58, 4.65)	36	9.0	0.03
20	erdos-renyi	31	6.0	7	22.0	(3.51, 1.53)	0	26.0	0.12
20	erdos-renyi	26	2.0	26	2.0	(1.62, 1.28)	30	0.0	0.02
20	erdos-renyi	37	0.0	37	0.0	(1.92, 1.80)	23	12.0	0.05
100	barabasi-albert	394	31.0	394	31.0	(684.96, 1139.63)	158	302.0	3.39
100	barabasi-albert	451	12.0	451	12.0	(830.53, 1200.94)	0	472.0	8.67
100	barabasi-albert	431	3.0	431	3.0	(856.88, 1252.07)	162	330.0	3.97
100	erdos-renyi	276	0.0	276	0.0	(391.13, 412.01)	231	60.0	3.15
100	erdos-renyi	293	5.0	293	5.0	(540.14, 799.91)	226	105.0	2.36
100	erdos-renyi	309	0.0	309	0.0	(603.39, 612.35)	266	50.0	2.6

Future Plans

- More testing with different parameters
- Try to find LP-based algorithms

References I

- Ali Ahmadi, et al. *2-Approximation for Prize-Collecting Steiner Forest*. Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2024.
- Akhmedov, Murodzhon, et al. "A fast prize-collecting steiner forest algorithm for functional analyses in biological networks." International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Cham: Springer International Publishing, 2017.

Thank you for your attention!