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The notion of (k , ℓ)-sparsity

Let k, ℓ ∈ N, ℓ < 2k.

Definition

A graph G = (V ,E) is (k, ℓ)-sparse if each vertex set X ⊆ V induces at most
max{0, k|X | − ℓ} edges.

Definition

A (k, ℓ)-sparse graph G = (V ,E) is (k, ℓ)-tight if |E | = k|V | − ℓ.

Example (Nash-Williams, 1961)

G can be partitioned into k forests ⇔ G is (k, k)-sparse.

Example (Laman, 1970)

G is minimally rigid in the plane ⇔ G is (2, 3)-tight.
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The considered problems

Problem (maximum-weight (k , ℓ)-sparse subgraph)

Input: A graph G = (V ,E) with a weight function w : E → R+.

Output: F ⊆ E such that H = (V ,F ) is sparse and w(F ) =
∑

e∈F w(e) is maximal.

Problem (recognizing (k, ℓ)-sparse graphs)

Input: A graph G = (V ,E).

Output: true if G is sparse, otherwise false.

A (2, 3)-sparse graph A graph that is not (2, 3)-sparse

Bence Deák Searching and generating sparse (sub)graphs 3 / 10



The considered problems

Problem (maximum-weight (k , ℓ)-sparse subgraph)

Input: A graph G = (V ,E) with a weight function w : E → R+.

Output: F ⊆ E such that H = (V ,F ) is sparse and w(F ) =
∑

e∈F w(e) is maximal.

Problem (recognizing (k , ℓ)-sparse graphs)

Input: A graph G = (V ,E).

Output: true if G is sparse, otherwise false.

A (2, 3)-sparse graph A graph that is not (2, 3)-sparse

Bence Deák Searching and generating sparse (sub)graphs 3 / 10



Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jordán, 2003; Lee, Streinu, 2008).

A paper claimed to improve this to O(n2 +m) (Lee, Streinu, Theran, 2005).

The improvement turned out to be wrong (Mihálykó, 2022; Madarasi, Matúz, 2023).

Question

Is there a quadratic-time algorithm for the problem?

Answer: yes!

Maintain the (k, ℓ)-components efficiently ⇒ reject edges in O(1).

Analysis: components can intersect, but “not too much” ⇒ O(n2 +m) can be
achieved.

Applications:

Minimum-cost rigid spanning subgraph problem.

2-approximation for the minimum-cost redundantly rigid (or globally rigid) spanning
subgraph problem (Jordán, Mihálykó, 2019).

Now all of these can be solved in quadratic time.
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Recognition – Intro

Note

When 0 ≤ ℓ < 2k, the recognition algorithm is a matroid independence oracle.

Range Case Old bounds

0 ≤ ℓ ≤ k general case O(n
√
n log n) (Gabow, Westermann, 1988)

case ℓ = k O(n1+o(1)) (Arkhipov, Kolmogorov, 2024)

k < ℓ < 2k general case O(n2) (Berg, Jordán, 2003; Lee, Streinu, 2008)

Laman case O(n1+o(1)) (Daescu, Kurdia, 2009)

2k ≤ ℓ < 3k general case O(n3) (Madarasi, Matúz, 2023)

case ℓ = 2k O(n2) (Madarasi, Matúz, 2023)

(In the case 2k ≤ ℓ < 3k, we require the sparsity bound only for sets with at least 3 vertices.)

An open question from rigidity theory:

Question

Is there a subquadratic algorithm for recognizing (2, 3)-sparse graphs?
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Recognition – A useful reduction

Suppose tk ≤ ℓ ≤ (t + 1)k, and let U0 ⊆ V be a stable set with t vertices.

Subproblem: is there a violating set strictly containing U0?

Statement

The above subproblem can be reduced to rooted (ℓ− tk)-arc-connectivity.

Example

Let (k, ℓ) = (2, 3), U0 = {u}.

Consider the graph G and digraph D below. Here, X ∋ u
violates the sparsity of G ⇔ X − u violates rooted 1-arc-connectivity in D.

u

s
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Recognition – The range k < ℓ < 2k

Nash-Williams theorem =⇒ a (k, ℓ)-sparse graph has a forest-decomposition F1, . . . ,Fk .

Definition

A forest F saturates the vertex set X if F [X ] is connected.

Observation

A violating set X is saturated by one of F1, . . . ,Fℓ−k .

Fi saturates X if and only if one of its components does.

Corollary

It suffices to detect if there is a violating set saturated by a given spanning tree F .
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Recognition – The range k < ℓ < 2k

We can quickly decide if there is a violating set containing some vertex c (use our
reduction, U0 := {c}).
Idea: Let c be the centroid of F ⇒ centroid decomposition.

Example

Let (k, ℓ) = (2, 3). Two steps of the centroid decomposition:

c

c1

c2

Note

For the Laman case, we get the best previous running time, but our algorithm is simpler,
much more general, and also provides a violating set.
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Recognition – Other ranges

The range ℓ ≤ k:

1 Find a k-indegree-bounded orientation.

2 Apply the reduction for U0 = ∅.

The range 2k ≤ ℓ < 3k:

1 Add the edges one by one.

2 Edge uv can be inserted ⇔ there is no X ⊋ {u, v} violating (k, ℓ+ 1)-sparsity.

3 Apply the reduction for U0 = {u, v}.
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Summary

Range Problem Old bounds New bounds

0 ≤ ℓ < k recognition O(n
√
n log n) O(n1+o(1))

*

k < ℓ < 2k recognition O(n2) O(n1+o(1))

†

optimization O(nm) O(n2 +m)

2k < ℓ < 3k recognition O(n3)

{
O(n2) if ℓ = 2k + 1

O(n2 log n) if ℓ > 2k + 1

* Purely combinatorial version: O(n
√
n).

† Purely combinatorial version: O(n
√
n log n).

Our papers:

Optimization problem: Quadratic-Time Algorithm for the Maximum-Weight
(k, ℓ)-Sparse Subgraph Problem (https://arxiv.org/abs/2511.20882)

Recognition problem: in progress...
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