Searching and generating sparse (sub)graphs

Bence Dedk

Eo6tvos Lorand University
Supervisor: Péter Madarasi

Project work lI.
gth January, 2026

Bence Dedk Searching and generating sparse (sub)graphs

The notion of (k, £)-sparsity

Let k,Z €N, £ < 2k.

Bence Dedk Searching and generating sparse (sub)graphs

The notion of (k, £)-sparsity

Let k,Z €N, £ < 2k.

Definition

A graph G = (V,E) is (k,{)-sparse if each vertex set X C V induces at most
max{0, k| X| — ¢} edges.

Bence Dedk Searching and generating sparse (sub)graphs

The notion of (k, £)-sparsity

Let k,Z €N, £ < 2k.

Definition
A graph G = (V,E) is (k,{)-sparse if each vertex set X C V induces at most
max{0, k| X| — ¢} edges.

Definition

A (k,£)-sparse graph G = (V, E) is (k,£)-tight if |E| = k|V| — £.

Bence Dedk Searching and generating sparse (sub)graphs

The notion of (k, £)-sparsity

Let k,Z €N, £ < 2k.

Definition
A graph G = (V,E) is (k,{)-sparse if each vertex set X C V induces at most
max{0, k| X| — ¢} edges.

Definition
A (k,£)-sparse graph G = (V, E) is (k,£)-tight if |E| = k|V| — £.

Example (Nash-Williams, 1961)
G can be partitioned into k forests < G is (k, k)-sparse.

Bence Dedk Searching and generating sparse (sub)graphs

The notion of (k, £)-sparsity

Let k,Z €N, £ < 2k.

Definition

A graph G = (V,E) is (k,{)-sparse if each vertex set X C V induces at most
max{0, k| X| — ¢} edges.

Definition
A (k,£)-sparse graph G = (V, E) is (k,£)-tight if |E| = k|V| — £.

Example (Nash-Williams, 1961)
G can be partitioned into k forests < G is (k, k)-sparse.

Example (Laman, 1970)

G is minimally rigid in the plane < G is (2, 3)-tight.

Bence Dedk Searching and generating sparse (sub)graphs 2 /10

The considered problems

Problem (maximum-weight (k, £)-sparse subgraph)

Input: A graph G = (V, E) with a weight function w : E — R
Output: F C E such that H = (V, F) is sparse and w(F) = > ., w(e) is maximal.

Bence Dedk Searching and generating sparse (sub)graphs

The considered problems

Problem (maximum-weight (k, £)-sparse subgraph)

Input: A graph G = (V, E) with a weight function w : E — R
Output: F C E such that H = (V, F) is sparse and w(F) = > ., w(e) is maximal.

Problem (recognizing (k, ¢)-sparse graphs)

Input: A graph G = (V,E).

Output: true if G is sparse, otherwise false.

A /]

A (2, 3)-sparse graph A graph that is not (2, 3)-sparse

Bence Dedk Searching and generating sparse (sub)graphs 3/10

Optimization (past work)

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Is there a quadratic-time algorithm for the problem? \

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Is there a quadratic-time algorithm for the problem? \

Answer: yes!
@ Maintain the (k, £)-components efficiently = reject edges in O(1).

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Is there a quadratic-time algorithm for the problem? \

Answer: yes!
@ Maintain the (k, £)-components efficiently = reject edges in O(1).
@ Analysis: components can intersect, but “not too much” = O(n* + m) can be
achieved.

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Is there a quadratic-time algorithm for the problem?

Answer: yes!
@ Maintain the (k, £)-components efficiently = reject edges in O(1).
@ Analysis: components can intersect, but “not too much” = O(n* + m) can be
achieved.

Applications:
@ Minimum-cost rigid spanning subgraph problem.

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)

Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).
o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Is there a quadratic-time algorithm for the problem?

Answer: yes!
@ Maintain the (k, £)-components efficiently = reject edges in O(1).
@ Analysis: components can intersect, but “not too much” = O(n* + m) can be
achieved.

Applications:
@ Minimum-cost rigid spanning subgraph problem.

@ 2-approximation for the minimum-cost redundantly rigid (or globally rigid) spanning
subgraph problem (Jordan, Mihdlyké, 2019).

Bence Dedk Searching and generating sparse (sub)graphs

Optimization (past work)
Naive algorithm: O(nm) via augmenting paths (Berg, Jorddn, 2003; Lee, Streinu, 2008).

o A paper claimed to improve this to O(n® + m) (Lee, Streinu, Theran, 2005).
@ The improvement turned out to be wrong (Mihalykd, 2022; Madarasi, Mattiz, 2023).

Is there a quadratic-time algorithm for the problem?

Answer: yes!
@ Maintain the (k, £)-components efficiently = reject edges in O(1).
@ Analysis: components can intersect, but “not too much” = O(n* + m) can be
achieved.

Applications:
@ Minimum-cost rigid spanning subgraph problem.
@ 2-approximation for the minimum-cost redundantly rigid (or globally rigid) spanning
subgraph problem (Jordan, Mihdlyké, 2019).

Now all of these can be solved in quadratic time.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — Intro

When 0 < ¢ < 2k, the recognition algorithm is a matroid independence oracle.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — Intro

When 0 < ¢ < 2k, the recognition algorithm is a matroid independence oracle.

Range Case Old bounds

0<¢<k general case O(n+/nlog n) (Gabow, Westermann, 1988)
case £ = k O(ntto(1)) (Arkhipov, Kolmogorov, 2024)

k<< 2k general case O(n?) (Berg, Jorddn, 2003; Lee, Streinu, 2008)
Laman case O(nt+o(1)) (Daescu, Kurdia, 2009)

2k < < 3k general case o(n%) (Madarasi, Mattiz, 2023)
case £ = 2k O(n?) (Madarasi, Matiz, 2023)

(In the case 2k < ¢ < 3k, we require the sparsity bound only for sets with at least 3 vertices.)

Bence Dedk

Searching and generating sparse (sub)graphs

Recognition — Intro

When 0 < ¢ < 2k, the recognition algorithm is a matroid independence oracle.

Range Case Old bounds

0<¢<k general case O(n+/nlog n) (Gabow, Westermann, 1988)
case { = k O(n'+o()) (Arkhipov, Kolmogorov, 2024)

k <t <2k general case O(nz) (Berg, Jorddn, 2003; Lee, Streinu, 2008)
Laman case O(nt*o(1)) (Daescu, Kurdia, 2009)

2k < < 3k general case o(n%) (Madarasi, Mattiz, 2023)
case £ = 2k O(n?) (Madarasi, Matiz, 2023)

(In the case 2k < ¢ < 3k, we require the sparsity bound only for sets with at least 3 vertices.)

Bence Dedk

Searching and generating sparse (sub)graphs

Recognition — Intro

When 0 < ¢ < 2k, the recognition algorithm is a matroid independence oracle.

Range Case Old bounds

0<¢<k general case O(n+/nlog n) (Gabow, Westermann, 1988)
case { = k O(n'+o()) (Arkhipov, Kolmogorov, 2024)

k <t <2k general case O(nz) (Berg, Jorddn, 2003; Lee, Streinu, 2008)
Laman case O(nt*o(1)) (Daescu, Kurdia, 2009)

2k < < 3k general case o(n%) (Madarasi, Mattiz, 2023)
case £ = 2k O(n?) (Madarasi, Matiz, 2023)

(In the case 2k < ¢ < 3k, we require the sparsity bound only for sets with at least 3 vertices.)

An open question from rigidity theory:

Is there a subquadratic algorithm for recognizing (2,3)-sparse graphs?

Bence Dedk Searching and generating sparse (sub)graphs 5/ 10

Recognition — A useful reduction

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — A useful reduction

Suppose tk < ¢ < (t+ 1)k, and let Uy C V be a stable set with t vertices.

Subproblem: is there a violating set strictly containing Ug?

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — A useful reduction

Suppose tk < ¢ < (t+ 1)k, and let Uy C V be a stable set with t vertices.

Subproblem: is there a violating set strictly containing Ug?

The above subproblem can be reduced to rooted (¢ — tk)-arc-connectivity.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — A useful reduction

Suppose tk < ¢ < (t+ 1)k, and let Uy C V be a stable set with t vertices.

Subproblem: is there a violating set strictly containing Ug?

The above subproblem can be reduced to rooted (¢ — tk)-arc-connectivity.

Let (k,£) = (2,3), Up = {u}.

Bence Dedk Searching and generating sparse (sub)graphs 6 /10

Recognition — A useful reduction

Suppose tk < ¢ < (t+ 1)k, and let Uy C V be a stable set with t vertices.

Subproblem: is there a violating set strictly containing Ug?

The above subproblem can be reduced to rooted (¢ — tk)-arc-connectivity.

Let (k,€) = (2,3), Up = {u}. Consider the graph G and digraph D below. Here, X 5 u
violates the sparsity of G < X — u violates rooted 1-arc-connectivity in D.

Bence Dedk

Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

Nash-Williams theorem = a (k, £)-sparse graph has a forest-decomposition Fi,..., F.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

Nash-Williams theorem = a (k, £)-sparse graph has a forest-decomposition Fi,..., F.

Definition

A forest F saturates the vertex set X if F[X] is connected.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

Nash-Williams theorem = a (k, £)-sparse graph has a forest-decomposition Fi,..., F.

Definition

A forest F saturates the vertex set X if F[X] is connected.

Observation

A violating set X is saturated by one of F1, ..., Fo_.

F; saturates X if and only if one of its components does.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

Nash-Williams theorem = a (k, £)-sparse graph has a forest-decomposition Fi,..., F.

Definition

A forest F saturates the vertex set X if F[X] is connected.

Observation

A violating set X is saturated by one of F1, ..., Fo_.

F; saturates X if and only if one of its components does.

It suffices to detect if there is a violating set saturated by a given spanning tree F.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

We can quickly decide if there is a violating set containing some vertex ¢ (use our
reduction, Up := {c}).

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

We can quickly decide if there is a violating set containing some vertex ¢ (use our
reduction, Up := {c}).

Idea: Let c be the centroid of F = centroid decomposition.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — The range k < ¢ < 2k

We can quickly decide if there is a violating set containing some vertex ¢ (use our
reduction, Up := {c}).

Idea: Let c be the centroid of F = centroid decomposition.

Let (k,£) = (2,3). Two steps of the centroid decomposition:

Bence Dedk Searching and generating sparse (sub)graphs 8 /10

Recognition — The range k < ¢ < 2k

We can quickly decide if there is a violating set containing some vertex ¢ (use our
reduction, Up := {c}).

Idea: Let c be the centroid of F = centroid decomposition.

Let (k,£) = (2,3). Two steps of the centroid decomposition:

Bence Dedk Searching and generating sparse (sub)graphs 8 /10

Recognition — The range k < ¢ < 2k

We can quickly decide if there is a violating set containing some vertex ¢ (use our
reduction, Up := {c}).

Idea: Let c be the centroid of F = centroid decomposition.

Let (k,£) = (2,3). Two steps of the centroid decomposition:

For the Laman case, we get the best previous running time, but our algorithm is simpler,
much more general, and also provides a violating set.

Bence Dedk Searching and generating sparse (sub)graphs 8 /10

Recognition — Other ranges

The range ¢ < k:

@ Find a k-indegree-bounded orientation.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — Other ranges

The range ¢ < k:
@ Find a k-indegree-bounded orientation.
@ Apply the reduction for Uy = 0.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — Other ranges

The range ¢ < k:
@ Find a k-indegree-bounded orientation.
@ Apply the reduction for Uy = 0.

The range 2k < ¢ < 3k:
© Add the edges one by one.

Bence Dedk Searching and generating sparse (sub)graphs

Recognition — Other ranges

The range ¢ < k:
@ Find a k-indegree-bounded orientation.
@ Apply the reduction for Uy = 0.

The range 2k < ¢ < 3k:
© Add the edges one by one.
@ Edge uv can be inserted < there is no X 2 {u, v} violating (k, £ + 1)-sparsity.
@ Apply the reduction for Uy = {u, v}.

Bence Dedk Searching and generating sparse (sub)graphs

Range Problem Old bounds New bounds
0</t<k recognition O(ny/nlogn) O(n1+°(1))
k <l<2k recognition Oo(n?) O(ntte(1)
optimization O(nm) O(n? 4+ m)
S U1 3%

Bence Dedk Searching and generating sparse (sub)graphs

Range Problem Old bounds New bounds
0</t<k recognition O(ny/nlogn) O(n1+°(1))*
k << 2k recognition Oo(n?) O(n1+°(1))T
optimization O(nm) O(n? 4+ m)
S U1 3%

" Purely combinatorial version: O(ny/n).
t Purely combinatorial version: O(n+/nlog n).

Bence Dedk Searching and generating sparse (sub)graphs

Range Problem Old bounds New bounds
0</t<k recognition O(ny/nlogn) O(n1+0(1))*
k << 2k recognition Oo(n?) O(n1+°(1))T
optimization O(nm) O(n? 4+ m)
S U1 3%

" Purely combinatorial version: O(ny/n).
t Purely combinatorial version: O(n+/nlog n).

Our papers:

o Optimization problem: Quadratic-Time Algorithm for the Maximum-Weight
(k, £)-Sparse Subgraph Problem (https://arxiv.org/abs/2511.20882)

@ Recognition problem: in progress...

Bence Dedk Searching and generating sparse (sub)graphs

