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1 Introduction
In the mathematical camps of Lajos Pósa, the students meet many fun problems of coop-
erative games. As a student, I really enjoyed solving them, even though my main interest
was not necessarily only combinatorics. During my years at university, I visited these
camps as an organizer and talked with other organizers about possible questions, that
can be asked connected to these problems. The main direction of the questions was to
include some kind of infinity in the games. In this thesis, I list the questions we asked and
the results we managed to prove, not necessarily connected to the camps. Some of our
work has been already asked or known, see [1], [2] and [3]. In [2], one can find consistency
results connected to the axiom of choice. In this thesis, we will work in ZFC. Beyond my
MSc thesis, we plan to write a research article in this topic. This thesis is an extension
of my Directed Studies 1 thesis: as most of the results are our own, there is no reason
the delete the results from the previous thesis. New results include the cases S being
well-ordered or backwards well-ordered.

2 Guessing hat colours

2.1 Preliminaries

First, let us state the original problem from the camp (which is usually given to the
students in grade 8).

Problem 2.1. There are 10 prisoners standing in a line, all facing towards the same end
of the line. Each prisoner is given a hat which is either red or blue. Each prisoner can see
all of those prisoners’ hats who are in front of them. They guess the colour of their own
hat in the order they are standing, starting with the prisoner who sees everyone else. They
hear each other’s guesses and can use this information to guess their own colour. The
question is to determine the maximum number of correct guesses that can be guaranteed,
and to give a strategy achieving it. The prisoners can fix a strategy before they get their
hats, but must not communicate after that (except hearing each other’s guesses).

Proposition 2.2. We state that the answer for Problem 2.1 is that it can be guaranteed
that at most 1 prisoner gives an incorrect guess. More generally, having k > 1 prisoners
in the line and having n > 1 possible hat-colours, it is possible to guarantee that only the
starting prisoner may make an incorrect guess.

Proof. Let us convert the n colours for the n different residues modulo n, so basically we
can look at the problem as having hats being the different residues. Now the first prisoner
guesses the residue of the sum of all the other hats. He may not succeed, but then the
next prisoner can calculate the residue of the difference of the heard guess and the sum
of all hats ahead of them. This difference is indeed the hat of this prisoner. Now the next
prisoners sum not only the seen hats, but also all the heard hats (starting from the second
prisoner) and subtract this sum from the first guess, resulting in their hat colour. This
way, only the first person may guess incorrectly. Of course, the starting prisoner’s guess
cannot be guaranteed, as he does not get any information from the other hats, meaning
that it is not possible to guarantee the correctness of all guesses.

From now on, every variant will include infinity in a way. For the easier formalization,
we now state the general form of the problem.
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Problem 2.3. Suppose that prisoners stand on a subset S ̸= ∅ of the real line. Each
prisoner is given a hat which has a colour chosen from a set C with (either finite or infinite)
cardinality κ ≥ 2. Note, that C is also known for the prisoners before handing out the
hats. Each prisoner can see those prisoners’ hats, who stand on greater numbers. They
guess the colour of their own hat in the same order as they are standing: each prisoner
hears all the guesses of those who stand on a smaller number and can use this information
to guess their own colour. The question is to determine the maximum number of correct
guesses that can be guaranteed, and to give a strategy achieving it. The prisoners can
fix a strategy before they get their hats, but must not communicate after that beyond
hearing each other’s guesses.

Remark 2.4. The possible answers for bounding of the number of incorrect guesses in
Problem 2.3 are the following.

• For a non-negative constant k, it can be guaranteed that at most k prisoners are
incorrect, but this does not hold for any non-negative l < k.

• It can be guaranteed that only finitely many prisoners are incorrect, but for any
non-negative k, it cannot be guaranteed that at most k prisoners are incorrect.

• It can be guaranteed that only countably infinitely many prisoners are incorrect but
it cannot be guaranteed that only finitely many prisoners are incorrect.

• It cannot be guaranteed, that only countably many prisoners are incorrect.

Proposition 2.5. For any standing position S ̸= ∅ and any colour set C with at least
two elements, it cannot be guaranteed that all prisoners are correct.

Proof. Suppose indirectly that everyone gets the same element c1 as a hat, so in this
case, everyone should guess c1. On the other hand if we change the colour of the prisoner
standing on x to a different colour c2 (and every other colour stays c1), then still every
prisoner on numbers less than x should guess c1. But then the prisoner on x heard only
c1 guesses and sees only c1 colours, so as in the first case, he should still guess c1, which
would be a mistake.

Now we give complete solutions for Problem 2.3 in the case of some particular standing
subsets S and colour sets C. In many cases, we give strategies guaranteeing that at most
1 prisoner is incorrect. In these cases, we can always use Proposition 2.5, which shows
that the answer is really 1, so we will be done after proving the correctness of the strategy.

Theorem 2.6. For a fixed n, let S be the non-negative integers not greater than n,
furthermore let C be a set with an arbitrary cardinality κ. We state that it is possible
to guarantee that at most only 1 prisoner is incorrect and it cannot be guaranteed that 0
prisoners are incorrect.

Proof. We give a strategy guaranteeing that only the prisoner standing on 0 may guess
incorrectly. If κ is finite, then we already see the solution in Proposition 2.2. If κ is
infinite, then it is well-known that there is a bijection between the elements of C and
between the possible hat-colour ordered n-tuples of the n people in the front as κn = κ.
Agreeing on such a bijection, the first prisoner simply guesses the colour, which is the
pair of the seen n hats. With this, the others immediately know their colours, they do
not even have to listen to the remaining guesses.
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Remark 2.7. In the case C being the set of positive integers, we can give another elegant
strategy. The prisoner on 0 can simply say the sum of all numbers (without taking any
residues), and the same argument works as in Proposition 2.2.

2.2 About the parity function

From now on, we will use a specific equivalence-relation between the possible colour-
sequences. We first describe this relation, and then continue discussing special cases of
the problem.

Let A be the set of all possibilities of putting hats on the prisoners for a given, but
arbitrary C and S. This A consists of (ordered) colour-sequences At and we will denote
the true colour-sequence by A. Each At has ordered pairs as elements, in which the first
element denotes the real number of the prisoner which he stands on, and the second
denotes the colour of his hat. (Note, that the different At-s only differ in the second
part of their elements. We can view at the At-s as ordered |S|-tuples of the second
part of their elements.) Now let us define an equivalence-relation ∼ in A, between the
different At-s. We say that A1 is equivalent to A2 if and only if they differ in only
finitely many elements, and we denote this by A1 ∼ A2. (Note that "differs" is well-
defined, as |A1\A2| = |A2\A1|, as |Ai| = |S| for all Ai ∈ A.) This is really an equivalence
relation, as for arbitrary A1, A2, A3 ∈ A, we have |A1\A1| = 0 and |A1\A2| = |A2\A1| and
|A1\A3| ≤ |A1\A2|+ |A2\A3|. It is well-known, that an equivalence-relation partitions the
set into disjoint equivalence-classes. From this, we know that ∼ partitions A into disjoint
equivalence-classes, let us denote the set of the classes by E and its elements by Ei. (We
do not state anything about the cardinality of E .) By the axiom of choice, let us choose
an element from each equivalence-class, which will represent the whole class: for each Ei,
choose an Ri ∈ Ei. (Of course, Ri is a hat-sequence, so for every Ri, there exists an At,
for which Ri = At.) Let us call the set of these Ri-s the set of representatives, and denote
it by R. By this, for every At ∈ A, there is exactly one Ri ∈ R, for which At ∼ Ri.
Notice, that if a prisoner knows all but finitely many hats, then they also know what is
the equivalence-class of the hat-sequence, and from this they also know the representative
of the sequence. We will use these notations throughout the proofs.

2.3 The case of S = N
Theorem 2.8. Let S be the non-negative integers, furthermore let C be {0, 1}. We state
that it is possible to guarantee that at most only 1 prisoner is incorrect and it cannot be
guaranteed that 0 prisoners are incorrect.

Proof. We give a strategy guaranteeing that only the prisoner standing on 0 may guess
incorrectly. As the prisoner on 0 sees every other prisoner’s hat, he knows which sequence
R represents the true sequence A of the other prisoners. Now he should guess 0 if A and
R differs at even number of places and should guess 1 if they differ at odd number of
places. Now we prove inductively that all the other prisoners guess correctly.

First, notice that every prisoner sees all but finitely many hats, thus everyone knows
the equivalence class and the representative. So the prisoner on 1 sees every hat what 0
sees, except his own. By this, he can decide whether his hat agrees the colour which is
in the representative or not, as it changes the parity of the number of differences. So the
prisoner on 1 guesses correctly.

6



From now on, assume that everyone until k guessed correctly and we want to prove
that the prisoner on k + 1 also guesses correctly. This is true, as he also knows the
representative and knows that every guess before him was correct. So the same way as
the prisoner on 1 could find out his colour, now the prisoner on k + 1 also sets the parity
of differences to the heard one. Thus the prisoner on k + 1 also guessed correctly, so we
completed the induction step and we are done.

Theorem 2.9. Every strategy that solves Theorem 2.8 is basically the same as the one,
we gave above. Precisely, it is true, that any strategy for Theorem 2.8 is in the form of
prisoner 0 telling the parity of the number of differences for some fixed representatives.

Proof. Let us take an arbitrary colour-sequence, we know that everyone from the second
prisoner guessed correctly and let us denote the guess of the prisoner on 0 by ε. Changing
the colour of an arbitrary prisoner implies that in the case of this new colour-sequence,
the guess of the prisoner on 0 should be different from ε, basically meaning it is 1 − ε.
From these new colour-sequences, we could also change only one colour, implying that
the helping guess now must be ε. This could be repeated arbitrary many times, which
means that in the case of sequences which differs from the original at even many places,
the helping guess must be ε, otherwise 1 − ε. This determines the strategy for the
whole equivalence-class, which ends in the desired form. Of course, this reasoning works
independently for each equivalence class, so for every class, the strategy is in the desired
form. The choice of representatives are also independent in the classes. Note, that if we
choose a sequence as a representative, and change it to another one for which the number
of differences are even, the strategy will remain the same.

Remark 2.10. Note, that the strategies described in Theorem 2.9 are characterized by
the above-described parity functions.

Theorem 2.11. Let S be the non-negative integers, furthermore let C be a set with an
arbitrary cardinality κ. We state that it is possible to guarantee that at most only 1
prisoner is incorrect and it cannot be guaranteed that 0 prisoners are incorrect.

Proof. We give a strategy guaranteeing that only the prisoner standing on 0 may guess
incorrectly. There will be two cases: κ is finite or infinite.

If κ > 2 is finite, then we can modify the given strategy in Proposition 2.2. As every
prisoner knows the representative, it is enough for the prisoner on 0 to communicate
the differences from the representative. The strategy is to first give a bijection between
the colours and the remainders modulo κ. Then the prisoner on 0 guesses the sum of
the differences from the representative modulo κ. In other words, for every n > 1, he
calculates the remainder of the difference of the true colour on n and the representative’s
colour on n (subtracting the representative’s from the true colour). As all but finitely
many differences are 0, he can simply guess the remainder of the sum of the differences.
Now everyone else can find out the remainder of their colour’s difference to the one in the
representative from the earlier guesses, by the same reasoning as in Proposition 2.2.

If κ is infinite, then there is still a representative, for which there are only finitely
many differences and everyone know this representative. So it is enough for the prisoner
on 0 to communicate the places of the differences and the real colours at these places.
Notice, that this is a finite tuple of pairs, in which the first elements are positive integers
and the second elements are the true colours. But as κ is infinite, there is a bijection
between a set with κ elements and the finite tuples with κ possible elements. Using this
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bijection, the prisoner on 0 guesses the set of bad places and their real colours, meaning
that everyone will immediately know their real colour.

Remark 2.12. Note that in the case of κ being infinite, after the guess of the prisoner
on 0, everyone immediately knows their colour, as there was no need to hear the other
guesses. On the other hand, it is not possible to do that for the finite case, even when
we only have three prisoners. (This is really an easier problem, as we could fix that every
prisoner after the first three gets a specific colour.) So we state that there is no strategy,
when immediately after the guess of the first prisoner, everyone knows their colour. This
is true, because the third prisoner does not see anything, so for his correctness, the guess
of the first prisoner is determined by only the third colour. Because of this, when changing
the colour of only the second prisoner’s hat, the guess should not change, which means
that the second prisoner cannot find out his colour. In other words, as the guess of the first
prisoner only depends on the third colour, the second prisoner does not get information
about his colour.

2.4 The case of S ⊆ {0}
⋃
{ 1
n : n ∈ Z, 0 < n}

Theorem 2.13. Let S = {0}
⋃
{ 1
n
: n ∈ Z, 0 < n}, furthermore let C be {0, 1}. We state

that it is possible to guarantee that at most only 1 prisoner is incorrect and it cannot be
guaranteed that 0 prisoners are incorrect.

Proof. We give a strategy guaranteeing that only the prisoner standing on 0 may guess
incorrectly. The strategy is the same as in Theorem 2.8, so the prisoner on 0 guesses the
parity of the number of differences compared to the representative.

Indirectly suppose that at least one other prisoner guessed incorrectly. If there is only
one other such prisoner, then until his guess everyone guessed correctly and only finitely
many prisoners are remained, so he also should have guessed correctly as he knows the
correct representative.

Now suppose that there are at least two incorrect guesses. Note, that it is well-defined
to look at the last two incorrect guesses, as for each prisoner, there is only finitely many
after him. But then notice, that every prisoner thinks about the same representative, as all
but finitely many prisoners have guessed before each prisoner. But then after the second
from last incorrect guess, the parity of differences compared to the assumed representative
is correct. But then the last incorrect guess would make this parity incorrect, as otherwise
the second from last guess would be the opposite. This is a contradiction, as the strategy
was to always have the correct parity compared to the assumed representative.

Theorem 2.14. Let S = { 1
n
: n ∈ Z, 0 < n}, furthermore let C be {0, 1}. We state

that it is possible to guarantee that at most only 1 prisoner is incorrect and it cannot be
guaranteed that 0 prisoners are incorrect.

Proof. We will use the usual equivalence-relation, giving the existence of a representative,
from which only finitely many differences exist. Let p be a function from the finite sets
of positive numbers to the set of odd numbers, sending each set to different odd integer
with the extra property that p(H) > max(H) for each finite set H. (Note, that p can be
constructed recursively by enumerating the finite sets of positive integers.) We will use
this p, to get from a finite set of differences, to a hinting prisoner.

Every prisoner knows the representative of the heard guesses so they think about the
same representative. Thus, if we assume that the representative is correct, then we could
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do the following strategy. Everyone should guess their colour from the representative,
until the corresponding hinting prisoner on 1

2k+1
guesses the opposite colour. The other

prisoners hear this, so they know the set of differences compared to the representative, so
every other prisoner guesses correctly.

Of course, we assumed that they guessed the correct representative. So we only need
to modify this strategy, to exclude the possibility of guessing a different equivalence class.
For this purpose, the prisoners on 1

2n
also get a role. Their task is that if until their point

no hinting occurred and they see that no hinting prisoner can hint the set of differences,
then they "shout", meaning that they tell the opposite colour from the heard represen-
tative. The other prisoners should notice the shout, but should play according to the
representative (as if there were no shouts). Notice, that if the prisoners guess a different
equivalence class, then there is a point, until all prisoners said exactly a different rep-
resentative. But this would mean that infinitely many shouts occurred until that point.
But this is a contradiction, as all these shouts differ from the representative, so we differ
from the representative at infinitely many places, so it was not the supposed representa-
tive. This contradiction came from the assumption of not guessing the correct equivalence
class. So there is only one possible guessing sequence, the one in which everyone but at
most one (the hinting) prisoner is incorrect, so we are done.

2.5 The case of S being well-ordered

Definition 2.15. We say that S ⊆ [0, 1] is well-ordered, if every non-empty subset of S
has a least element. We say that S is backwards well-ordered, if every non-empty subset
of S has a greatest element.

We will use well-known properties of well-ordered sets, the proofs of these can be found
for example in [4]. We want to highlight, that every well-ordered S ⊆ [0, 1] is countable.
This is because for each x ∈ S, we can define its proceeding element x′. So we have that
the intervals (x, x′) are disjoint, giving that at most countably many such can exist.

Theorem 2.16. Let S ⊆ [0, 1] be well-ordered, furthermore let C be {0, 1}. We state
that it is possible to guarantee that at most only 1 prisoner is incorrect and it cannot be
guaranteed that 0 prisoners are incorrect.

Proof. We give a strategy guaranteeing that only the first prisoner guess incorrectly. The
strategy is the same as in Theorem 2.8, so the first prisoner guesses the parity of the
number of differences compared to the representative.

The case of finite S was proved in Proposition 2.2, so we can assume that S is infinite.
As S is well-ordered, it defines an ordinal α such that the elements of S are in bijection
with the ordinals β < α. We will prove by transfinite recursion. Notice, that there is a
prisoner, who is proceeded by a subset SN ⊆ S isomorphic to N. As in Theorem 2.8, the
prisoners on Sn (excluding the first prisoner) guess correctly by the usual induction, so
we indeed have a base case.

Now let β be any ordinal ordinal (either successor or limit) and assume we have
proved the correctness of the guesses before β. Then the prisoner on β heard the true
colours, sees the true colours, so knows every other true colour. This means that he thinks
the same representative as the first prisoner, so he can calculate the correct parity and
therefore his colour. So we indeed proved the recursive step, finishing the correctness of
the strategy.
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2.6 The case of S being backwards well-ordered

Definition 2.17. We say that S ⊆ [0, 1] is backwards well-ordered, if every non-empty
subset of S has a greatest element. Note, that S is backwards well-ordered if and only if
the Minkowski-sum 1− S is well-ordered.

Remark 2.18. Notice, that in every backwards well-ordered set S, every non-first element
x has a unique preceding element. This is because we can take the non-empty subset
Sx = {y ∈ S : y < x}. On the other hand, the converse does not hold as we can take
S = {0}

⋃
{ 1
n
: n ∈ Z, 0 < n}

⋃
{2− 1

n
: n ∈ Z, 0 < n}.

As well-ordered subsets are countable, taking 1 − S gives that any backwards well-
ordered S ⊆ [0, 1] is countable.

Theorem 2.19. Let S ⊆ [0, 1] be backwards well-ordered with a first element, furthermore
let C be {0, 1}. We state that it is possible to guarantee that at most only 1 prisoner is
incorrect and it cannot be guaranteed that 0 prisoners are incorrect.

Proof. We give a strategy guaranteeing that only the first prisoner guess incorrectly. The
strategy is the same as in Theorem 2.8, so the first prisoner guesses the parity of the
number of differences compared to the representative.

By definition, everyone guessing correctly is indeed a valid guessing sequence, so we
just need to prove that no other guessing sequence is valid. Indirectly suppose that there
is another valid guessing sequence. If it contains only one mistake, then this prisoner
heard only correct guesses and sees the true colours, so he should have guessed correctly.
So we can suppose that this other valid guessing sequence has at least two mistakes.

As S is backwards well-ordered, we can take the last two prisoners who guessed in-
correctly. By definition, all the guesses are correct between them. But this means that
they think about the same equivalence class and therefore the same representative. But
then the earlier prisoner calculated its guess according to the latter’s colour, so after the
earlier guess, the parity is correct compared to their representative. But then the latter
should have guessed correctly, contradiction.

Remark 2.20. An alternative proof for Theorem 2.19 is to look at an arbitrary mistake
and the preceding prisoner. By definition, they think about the same representative,
so the earlier prisoner knows what the latter will guess according to his guess. But by
definition, the earlier guess is calculated taking into account the latter colour, so the parity
is correct after the earlier guess.

Theorem 2.21. Let S ⊆ [0, 1] be backwards well-ordered without a first element, further-
more let C be {0, 1}. We state that it is possible to guarantee that at most only 1 prisoner
is incorrect and it cannot be guaranteed that 0 prisoners are incorrect.

Proof. The intuition of our strategy is the same as in Theorem 2.14. Let us denote the
finite subsets of S by S<ω. Because of the countability of S, similarly as in Theorem 2.14,
we can recursively define a function F : S<ω → S with the extra property that F (H) <
min{x ∈ H} for each H ∈ S<ω.

Furthermore, let us define a parity-function p on the elements of S. What we need
from p : S → {h, s} is that if x is the preceding element of y, then p(x) ̸= p(y). We can
construct p as follows. Notice, that S is partitioned into chain equivalence classes by the
following relation: x ∼ y if and only if one of them is finitely preceded by the other, in
other words, if there exists x = x1, . . . , xn = y or x = xn, . . . , x1 = y with xi being the
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preceding element of xi+1. We will call these equivalence classes the chain decomposition
of S. Notice, that each chain is either finite or isomorphic to Z or to { 1

n
: n ∈ Z, 0 < n}

as we assumed that S does not have a first element. Now we can define the parity of one
element in each chain independently, defining uniquely the parity of the other elements.
The parities h and s encodes the hinting and shouting roles of the prisoners.

The strategy really will be the same as in Theorem 2.14. The only modification in the
reasoning is that the prisoners calculate the representative using the heard guesses and
the seen colours. If we assume that they know the true representative, then we could do
the following strategy. Everyone should guess their colour from the representative, until
the corresponding hinting prisoner (with parity h) guesses the opposite colour. The other
prisoners hear this, so they know the set of differences compared to the representative, so
every other prisoner guesses correctly.

Of course, we assumed that they guessed the correct representative. So we only need
to modify this strategy, to exclude the possibility of guessing a different equivalence class.
For this purpose, the prisoners on parity s also get a role. Their task is that if until
their point no hinting occurred and they see that no hinting prisoner can hint the set of
differences, then they "shout", meaning that they tell the opposite colour from the heard
representative. The other prisoners should notice the shout, but should play according to
the representative (as if there were no shouts).

Now we sum up the strategy described above. Each prisoner is either has the role of
hinting or shouting. Each prisoner should guess the colour from the representative, unless:
(i) you are the one who should hint (then hint) (ii) the prisoner who should have hinted
is already passed without hinting (then shout) (iii) a hint was made and your place is
encoded in the hint. Of course, the guessing sequence in which only the hinting prisoner
is incorrect, is indeed a valid guessing sequence. It is left to prove that no other guessing
sequence can occur.

The reasoning will be almost the same as in Theorem 2.14, but now chain-wise. If the
chain is finite, then they think about the same representative, so their guessing sequence is
indeed unique. If the chain is infinite, then inside each chain, they think about the same
representative. We distinguish cases by the place of the hinting prisoner. If the chain
is earlier then the hinting prisoner, then if the prisoners guess a different equivalence
class, then there is a point, until all prisoners said exactly a different representative. But
this would mean that infinitely many shouts occurred until that point. But this is a
contradiction, as all these shouts differ from the representative, so we differ from the
representative at infinitely many places, so it was not the supposed representative. So
in these chains, they indeed guess the colours from the true representative. If the chain
contains the hinting prisoner, then before the hinting prisoner, the earlier arguments work.
As everyone before the hinting prisoner guessed the true colours (just proved it), then the
hinting prisoner knows that he should hint, so makes the incorrect guess. After him in this
chain, the others notice the hint and guess accordingly as they and the hinting prisoner
think about the same representative. So in this chain, the hint is indeed made and after
him, the others guess accordingly. If the chain is after the hinting prisoner, then it will
be almost the same as the case when the chain is earlier than the hinting prisoner. If
the prisoners guess a different equivalence class, then there is a point, until all prisoners
said exactly a different representative. But this would mean that infinitely many shouts
occurred until that point. But this is a contradiction, as all these shouts differ from
the representative, so we differ from the representative at infinitely many places, so it
was not the supposed representative. So in these chains, they indeed guess the colours
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from the true representative according to the hint. So we proved that the only valid
guessing sequence is indeed the one, in which the hinting prisoner is incorrect, so we are
finished.

Corollary 2.22. Let S ⊆ [0, 1] be backwards well-ordered, furthermore let C be {0, 1}.
We state that it is possible to guarantee that at most only 1 prisoner is incorrect and it
cannot be guaranteed that 0 prisoners are incorrect.

Proof. This is an immediate corollary of Theorem 2.19 and Theorem 2.21.

2.7 A neither well-ordered or backwards well-ordered S

We now present an S which is neither well-ordered or backwards well-ordered, but it can
be guaranteed that at most only 1 prisoner is incorrect.

Theorem 2.23. Let S = {0}
⋃
{ 1
n
: n ∈ Z, 0 < n}

⋃
{2 − 1

n
: n ∈ Z, 0 < n}, as in

Remark 2.18, furthermore let C be {0, 1}. We state that it is possible to guarantee that at
most only 1 prisoner is incorrect and it cannot be guaranteed that 0 prisoners are incorrect.

Proof. The subset {0}
⋃
{ 1
n
: n ∈ Z, 0 < n} ⊆ S proves that S is not well-ordered, while

the subset {2 − 1
n
: n ∈ Z, 0 < n} ⊆ S proves that S is not backwards well-ordered. On

the other hand, the proof for Theorem 2.13 works here exactly the same way.

2.8 Conjectures, future plans

We plan to solve the following two cases

Conjecture 2.24. We conjecture that in the case of S = [0, 1] and C = {0, 1}, it is not
possible to guarantee only at most one incorrect guess.

Conjecture 2.25. We conjecture that in the case of S = Q
⋂
[0, 1] and C = {0, 1}, it is

not possible to guarantee only at most one incorrect guess.

2.9 Modified rules

2.9.1 The case of deaf prisoners

Now we give a few examples with hat-games, where the ground rules are a bit changed.

Theorem 2.26. Let S be the non-negative integers, furthermore let C be {0, 1}. Also
suppose that the prisoners are deaf, meaning that they cannot hear the guesses of the
prisoners standing on smaller numbers. We state that it is possible to guarantee that at
most only finitely many prisoners are incorrect, but for any non-negative k, it cannot be
guaranteed that at most k prisoners are incorrect.

Proof. First, we give a strategy guaranteeing at most finitely many mistakes. First notice,
that similarly as in Theorem 2.8, every prisoner sees all but finitely many hats, thus know
the equivalence class and the representative. The strategy for everyone is to simply guess
the colour which is on themselves in the representative. So basically, as everyone know the
correct representative and everyone guesses by that, the guesses will form the representa-
tive itself. This means that as the colour-sequence only differs from its representative at
finitely many places, the number of mistakes is also finite.
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Now we prove that for any positive integer k, it cannot be guaranteed, that any of
the first k prisoners would be correct, no matter what are the colours from k + 1. We
will prove the statement by induction. The statement is trivially true for k = 1, as no
matter what the first prisoner sees, if he would guess correctly, only changing his colour
makes the guess wrong. Now suppose that have proved the statement for k and we want
to prove it for k + 1. Now let us take an arbitrary colour-sequence. If the guess of the
k + 1-th prisoner is correct, then change the colour of only this prisoner. This does not
modify his guess, as the seen colours remain the same, meaning that now the guess is
incorrect. Now as we have proven the statement for k, we can change the first k colours
such that all their guesses are wrong. But as the k+1-th prisoner does not see these hats,
this guess remains the same, meaning that it remains wrong, completing the induction
step. So we finished the proof, as we showed a possibility for every k, such that all of the
first k guesses are wrong.

Theorem 2.27. Let S be the non-negative integers, furthermore let C be a set with an
arbitrary infinite cardinality κ. Also suppose that the prisoners are deaf, meaning that
they cannot hear the guesses of the prisoners standing on smaller numbers. We state that
it is possible to guarantee that at most only finitely many prisoners are incorrect, but for
any non-negative k, it cannot be guaranteed that at most k prisoners are incorrect.

Proof. First, we give a strategy guaranteeing at most finitely many mistakes. Notice,
that the exact same strategy as in Theorem 2.26, also works here. This is because ev-
eryone knows the representative here also, and can guess the colour in the representative.
Thus their guesses will be the whole representative, but as there are only finitely many
differences, there are only finitely many mistakes.

Now we prove that for any positive integer k, it cannot be guaranteed, that any of the
first k prisoners would be correct, no matter what are the colours from k+1, finishing the
proof. Investigate the problem, when we also tell the prisoners that from the κ colours, we
will only use two colours as hats and we also specify these two colours. This is an easier
task for them, as we did not give any restriction for their guesses, just told information
about the hats used. We state that even in the case of this much easier game, they cannot
guarantee for any positive integer k, that any of the first k guesses are correct. This is
because if anyone would guess a colour which is not from the specified two, then it is just
an immediate mistake and as they are deaf, no information is communicated with that.
(This reasoning would not work in the original problems, as more colours imply more
possibilities for giving information with the guess.) This means that we can suppose that
every guess is from the specified two. But now we reduced our problem to the one in
Theorem 2.26, which we have already solved.

Theorem 2.28. Let S = [0, 1], furthermore let C be a set with an arbitrary infinite
cardinality κ. Also suppose that the prisoners are deaf, meaning that they cannot hear
the guesses of the prisoners standing on smaller numbers. We state that it is possible to
guarantee that at most countably infinitely many prisoners are incorrect (but do not state
anything about the possibility of guaranteeing something better). Furthermore at the same
time, there exists a t ∈ [0, 1) such that every prisoner in [t, 1] guesses correctly.

Remark 2.29. One could observe, that the usual strategy does not work here without
modification, even for only two colours. As suppose, that the colour sets (for red and
blue) are R = (0, t] and B = (t, 1] for each t ∈ [0, 1] are representatives. These indeed fall
into different classes, so it is well-defined to let them be representatives. We do not care
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about the other representatives. Also, assume that every prisoner gets blue as a colour.
Then every prisoner (not caring about the 0-th) guessing blue is a valid guessing sequence.
But note, that everyone guessing red (not caring about the 0-th) is also a valid guessing
sequence. This shows that this strategy is not well-defined yet, we always have to check,
that only one valid guessing sequence exists.

Proof. The idea of the following proof is taken from [1] and [3].
Let F denote the possible colour-orders, so equivalently let F be the set of functions

from [0, 1] to κ. Using axiom of choice, well-order F to get {fα : α < |F|}.
Also, modify the equivalence relation on F to the following: f is equivalent to g if

and only if there exists a t ∈ [0, 1) such that f |[t,1] = g|[t,1]. Note that this is indeed an
equivalence relation, as if f, g and g, h are equivalent using t1 and t2 respectively, then
max(t1, t2) proves the equivalence of f, h.

Let us hand out the colours, denote this by f . Now each prisoner can decide that which
g ∈ F are possible only based on what they see. So each prisoner has a well-ordered set
G ⊆ F , containing all the possible functions from their point of view. Now each prisoner
chooses fα ∈ G which is the first in the well-ordering. Then each prisoner guesses their
colour according to the chosen fα. We state that this is a good strategy. (Because of the
well-ordering, it is well-defined.)

Note, that if a prisoner on t guesses incorrectly, it means that he chose an ft which
is actually not possible for all the prisoners standing behind him. This means that in
the well-ordering, ft proceeds all the chosen functions fs for prisoners standing on s < t.
This means that, as time flies, the (incorrectly chosen) functions which resulted in an
incorrect guess, form a descending chain in the well-ordering. But then with the natural
isomorphism, the real numbers of the incorrect guesses also form a well-ordered set. Here,
the ordering is backwards, but it does not change anything. It is well-known, that the
well-ordered subsets of the reals are countable. Furthermore, by this we also have the
existence of t ∈ [0, 1) such that every prisoner in [t, 1] guesses correctly, as otherwise we
would have an infinite decreasing chain.

Remark 2.30. We can modify Theorem 2.28 such that each prisoner should guess not
only their hat, but all the hats on prisoners who are standing on smaller numbers. In
order to get released, the prisoner on t should have a t0 < t such that his guess on the
whole interval [t0, t] is correct. Simply redefining the equivalence classes gives that at
most countable many prisoners are not released even in this stronger version.

2.9.2 Impostor prisoners

Definition 2.31. Consider the original problem in Problem 2.1 with n prisoners. Let an
impostor be a prisoner, who has the goal to maximize the number of mistakes (including
their guesses). The others know that the number of impostors between them, but do
not know who are the impostors, neither in which place will the impostors stand. The
non-impostor prisoners are called regular. The impostors know the strategy of the regular
prisoners. The task is to give the best strategy for the regular prisoners. An alternative
way of looking at an impostor is to look at him as a fool not understanding the strategy:
he randomly guesses a possible colour.

Theorem 2.32. Let S be the non-negative integers not greater than n and have k colours
and n > 2 players with 1 impostor among them. In this case, the answer is that it can
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be guaranteed that at most 3 prisoners give incorrect guesses, but for large n, it cannot be
guaranteed that at most 2 prisoners give incorrect guesses.

Proof. Let the strategy of the regular prisoners be the same as the original one in Propo-
sition 2.2. We state that this strategy indeed guarantees that at most three prisoners are
incorrect.

Notice, that before the impostor, everyone guesses the same as in Proposition 2.2,
so they are all correct (excluding the first prisoner). We state, that after the impostor,
only the next prisoner may be incorrect. We can see that if there is at most one regular
prisoner after the impostor, then we are done, so suppose that the next two prisoners are
Alice and Bob in this order. Then the guess of Alice is just the difference of the guess of
the impostor and the sum of what Alice sees. But then Bob knows what is the sum of
what Alice sees, so subtracting what Bob sees, indeed gives Bob’s real colour, no matter
what the impostor said. So we got that after the impostor, only at most one prisoner can
be incorrect. So the possible incorrect guesses can only be the first one, the impostor’s,
and the one following the impostor, proving the correctness of this strategy.

On the other hand, it can be easily checked, that it cannot be guaranteed to have any
correct guesses between the first three guesses, finishing the proof.

Theorem 2.33. Let S be the non-negative integers not greater than n and have k colours
and n > 2 players with ℓ impostors among them. In this case, the answer is that it can
be guaranteed that at most 2ℓ+ 1 prisoners give incorrect guesses.

Proof. Let the strategy of the regular prisoners be the same as the original one in the case
of one impostor. The only idea needed is to notice, that between any two consecutive
impostors, at most one prisoner can be incorrect. This is true because of the argument
in Theorem 2.32, as only possibly the first prisoner after the earlier impostor may be
incorrect. So the possible incorrect guesses can only be the first one, the impostors’, and
the one following each impostor, proving the correctness of this strategy.

On the other hand, it can be easily checked, that it cannot be guaranteed to have any
correct guesses between the first 2k + 1 guesses, finishing the proof.

Remark 2.34. Notice, that if in Theorem 2.33 we would have a countably infinite C,
then the answer would remain the same. This is because we can give a bijection from C
to Z, and the argument above would work the same way.

3 Guessing real numbers
I heard the following problems from Peter Simon. First, let us state the main problem.

Problem 3.1. There are some rooms, which contain boxes numbered by the positive
integers. In each box, there is a real number (not necessarily distinct ones). The rooms
are identical, meaning that for each n ∈ N, the box indexed by n has the same real
number rn in each room. For each room, there is a prisoner, who goes inside the room,
and opens the boxes in an arbitrary order. They can also choose the next box to open
based on what they have seen until that. Each prisoner have to leave one box of their
choice closed. Each prisoner have to guess the number in their closed box. The task is to
minimize the number of incorrect guesses. The prisoners can agree on a strategy before
going into the rooms, but once they go in, they must not communicate with the others.
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3.1 The case of two rooms

Theorem 3.2. In the case of two rooms, it is possible to guarantee that at most one guess
is incorrect.

Proof. We again have to work with equivalence classes. Now the set is the sequences
of real numbers and the equivalence relation is again, that two sequences differ only at
finitely many places. For each class, the prisoners choose a representative before going into
the rooms. One should note, that the prisoners will use the classes and representatives of
infinite subsequences of the boxes, not for the whole sequence.

The first prisoner opens the boxes with even indices, the second opens the boxes with
odd indices. They look at the seen infinite sequence and compare it with its representative.
By definition, they differ only at finitely many places. This means that there is a last
index, at which the number is different from the representative. Both make the assumption
that the sequence of their closed boxes is not the worse, meaning that the index of the last
difference is at least at large, as the index of the other prisoner’s last index of difference.
For the opened boxes, let the index of the last difference be ni for i ∈ {1, 2}. Then
the prisoners open all the remained boxes except the ni + 1-th one. Now they know the
representative of the other parity’s boxes, so they guess for the ni +1-th box the number
from the representative in this box.

This strategy is indeed good, as either n1 + 1 > n2 or n2 + 1 > n1 holds. So the
prisoner which first opened the worse sequence will guess correctly.

3.2 The case of n rooms

Theorem 3.3. In the case of n rooms, it is possible to guarantee that at most one guess
is incorrect.

Proof. We only have to slightly modify the proof of Theorem 3.2. Now each prisoner
i ∈ {1, . . . , n}, first opens all boxes with indices not congruent to i modulo n. For
each remainder j ̸= i, they calculate nj, the index of last difference compared to the
representative. Then each prisoner i calculates Mi = maxj ̸=i(nj) + 1. All of them make
the assumption, that ni < Mi. Then they open all but the Mi-th box in their congruence
class. Then they guess for this box the number from the representative. As the assumption
holds for at least n− 1 prisoners, their guesses are correct.

3.3 The case of countably infinite rooms

Theorem 3.4. In the case of countably infinitely many rooms, it is possible to guarantee
that at most one guess is incorrect.

Proof. We again just need to modify the proof of Theorem 3.3. Now partition the set
of positive integers into infinitely many infinite subsets. The subset Ni corresponds to
prisoner i. Each prisoner opens all the boxes with indices not in Ni. Unfortunately the
earlier used quantity maxj ̸=i(nj)+ 1 may be infinite. But it would be enough, if everyone
could chose an Mi based on (Nj)j ̸=i such that ni < Mi +1 would hold for all but at most
one prisoner. Note that maxj∈N(nj) + 1 is finite, if and only if maxj ̸=i(nj) + 1 is finite for
all the prisoners. If it is finite, then we are done by choosing Mi = maxj ̸=i(nj)+1. In the
other case, we have to modify the strategy, the following "lemma" solves this problem.
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Lemma 3.5. Suppose we have countably infinitely many prisoners standing in a circle.
Every prisoner gets a positive integer on his head such that the set of given numbers is
unbounded. The prisoners cannot see their own number, but can see all the other numbers.
When the authority tells them, all should point at another prisoner at the same time. We
state that it possible to to guarantee, that at most one prisoner points to a smaller number.
They can agree on a strategy before getting the numbers, but cannot communicate after
that.

Proof. The prisoners index themselves by N. We again use the same equivalence-relation
for the sequence of positive integers. Each prisoner can see all but one numbers, so all
of them knows the equivalence class and the representative. By definition, there is an N ,
which is the last difference compared to the representative. Let the representative’s i-th
element be ri and let the number on the i-th prisoner be ni. Then for i < N , the i-th
prisoner knows N while the others only know that N ≥ i. So the prisoners with i < N
should guess that Bi := maxi ̸=j≤N(nj) + 1 > ni while everyone else should guess that
Bi := maxj<i(nj, ri) + 1 > ni. Then prisoner i should point at a number greater then Bi,
the index of this number should be Mi. By this, everyone with ni = ri guesses correctly,
and only at most one ni ̸= ri guesses incorrectly, the one with single greatest ni.

By following the strategy in Lemma 3.5, the prisoners can choose correct indices Mi+1,
such that at most one of them chooses a sequence with last difference earlier then their
sequence’s last difference.

Remark 3.6. One should notice, that we did not use any property of the reals. So in
each version, we can replace the reals by any set with cardinality κ for any κ.

Remark 3.7. One could modify the boxes-problem, such that the prisoners have to leave
k ∈ N boxes closed and should guess for all of them. It can be guaranteed that all but
one prisoner is correct for all of their guesses. To see that, they should simply leave
the boxes with indices Mi + 1, . . . ,Mi + k closed before guessing in the above strategies.
They already know what is the representative, so they can guess for these boxes. As the
assumption still holds for all but one prisoner, they are going to guess correctly.

Remark 3.8. One could come up with the idea, that this should imply that each prisoner
guesses correctly with a positive probability, which is trivially not true. (Similar reasonings
could have come up also at the deaf-versions of the hat-problem.) The mistake in these
paradoxes is that the strategies are not measurable functions, so calculating probabilities
does not make sense.

Problem 3.9. What happens, when we have uncountably many prisoners? For example
the case of continuum prisoners with countably many boxes sounds interesting. And what
if we have both the number of prisoners and boxes continuum? We have not worked on
these questions yet, but it is planned in the future.
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