Infinite Games and the Axiom of Determinacy

Márton Hraboczki

June 2025

Márton Hraboczki

Infinite Games and the Axiom of Determinacy

June 2025

Infinite Game, $G_X(A)$

Definition

Let X be a non-empty set, and let $A \subseteq {}^{\omega}X$, that is, a set consisting of infinite sequences over X.

The game $G_X(A)$ is played between two players, I and II, who take turns choosing elements from X:

I: $x(0), x(2), x(4), \dots$ II: $x(1), x(3), x(5), \dots$

The result is an infinite sequence $x \in {}^{\omega}X$ (a function from the natural numbers to X). Player I wins if $x \in A$; otherwise, player II wins.

Determinacy

Definition

A game $G_X(A)$ is called **determined** if one of the players has a winning strategy - that is, a function that guarantees victory regardless of the opponent's moves.

Remarks

- It is a natural and deep question to ask which games are determined and for which player.
- Infinite games can characterize important regularity properties (measurability, Baire, perfect set).
- In most applications, X is either ω or 2 = {0,1}, so the games take place over the reals: outcomes x ∈ ^ωω or x ∈ ^ω2 naturally encode real numbers, so we can think of A as a set of real numbers.

Banach–Mazur Game, $G^{**}_{\omega}(A)$

Setup

Let $A \subseteq {}^{\omega}\omega$. Players I and II alternately choose non-empty finite sequences of natural numbers:

$$x = s_0 \hat{s}_1 \hat{s}_2 \cdots$$

The outcome is $x \in {}^{\omega}\omega$, the infinite concatenation (writing the finite sequences one after another). Player I wins if $x \in A$, otherwise Player II wins.

Theorem

- A is meager (countable union of nowhere dense sets) \iff Player II has a winning strategy.
- If the game $G_{\omega}^{**}(A \setminus O_A)$ is determined, then A has the Baire property, where O_A is the largest open set such that $O_A \setminus A$ is meager.

Perfect Set Game, $G_2^*(A)$

Setup

Let $A \subseteq {}^{\omega}2$. Player I chooses finite binary sequences s_i , while Player II picks single bits k_i . The resulting sequence is:

 $x = s_0 \hat{k}_1 \hat{s}_2 \hat{k}_3 \cdots$

Player I wins if $x \in A$, otherwise Player II wins.

Theorem

- A is countable \iff Player II has a winning strategy.
- A has a perfect subset (a nonempty closed set with no isolated points) \leftarrow Player I has a winning strategy.

Covering Game, $G(A, \varepsilon)$

Setup

- Fix $A \subseteq {}^{\omega}\omega, \varepsilon > 0$.
- Players I and II alternate choosing natural numbers.
- From this point on, the definition becomes technical we won't go into the details now.

Theorem

A set $A \subseteq {}^{\omega}\omega$ is Lebesgue measurable if for some minimal cover $B \supseteq A$, the game $G(B \setminus A, \varepsilon)$ is determined for some $\varepsilon > 0$.

Axiom of Determinacy

Definition

The Axiom of Determinacy (AD): For every $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.

Theorem

AD contradicts the Axiom of Choice (AC), but it is consistent with Zermelo–Fraenkel set theory (ZF).

Remark

- AD implies useful fragments like AC_ω(^ωω) (every countable collection of nonempty subsets of ^ωω has a choice function).
- In $\mathrm{ZF} + \mathrm{AD}$, all sets of reals have strong regularity properties.
- AD is closely related to the existence of large cardinals (measurable, Woodin).

Strong Cardinals under AD

Theorem $\operatorname{Con}(\operatorname{ZF} + \operatorname{AD}) \Rightarrow \operatorname{Con}(\operatorname{ZFC} + \exists \kappa \ (\kappa \ inaccessible)).$

Theorem

Assume AD. Then both ω_1 and ω_2 are measurable cardinals.

Note: Inaccessible and measurable cardinals are so large that their existence cannot be proven in ZFC alone.

Borel and Projective Hierarchies

Borel hierarchy:

- Σ_1^0 : open sets
- Π^0_1 : closed sets
- Σ_{n+1}^0 : countable unions of Π_n^0
- Π_{n+1}^0 : countable intersections of Σ_n^0

Borel hierarchy: $\bigcup_{n < \omega} \Sigma_n^0$

Projective hierarchy:

- Σ_1^1 : projections of Borel sets (analytic)
- Π^1_1 : complements of Σ^1_1
- Σ_{n+1}^1 : projections of Π_n^1
- Π^1_{n+1} : complements of Σ^1_{n+1}

Projective hierarchy: $\bigcup_{n < \omega} \Sigma_n^1$

Determinacy and the Axiom of Choice

Borel Determinacy:

• All Borel games are determined (provable in ZF). **Projective Determinacy (PD):**

• PD = every projective set is determined:

$$\operatorname{PD} := \operatorname{Det} \left(\bigcup_{n < \omega} \Pi^1_n \right)$$

- PD is not known to be provable in ZFC.
- PD does not contradict the Axiom of Choice.
- PD is consistent relative to large cardinal axioms.

Woodin Cardinals

- Woodin cardinals are extremely large cardinals, defined by how certain properties of the universe are preserved when comparing two models of set theory.
- Central to descriptive set theory and inner model theory.
- Their existence implies strong forms of determinacy.

Theorem

- $\operatorname{Con}(\operatorname{ZFC} + \operatorname{Det}(\Pi_2^1)) \iff \operatorname{Con}(\operatorname{ZFC} + 1 \operatorname{Woodin cardinal})$
- $Con(ZFC + PD) \Rightarrow Con(ZFC + n Woodin cardinals)$ for all $n \in \omega$
- $\operatorname{Con}\left(\begin{array}{c}\operatorname{ZFC} + \text{finitely many Woodin cardinals}\\ + \text{a measurable cardinal above them}\end{array}\right) \Rightarrow \operatorname{Con}(\operatorname{ZFC} + \operatorname{PD})$
- $Con(ZF + AD) \iff Con(ZFC + infinitely many Woodin cardinals)$