
Oracle complexity of matroid intersection

1 Introduction to matroids

A matroid is an abstract structure defined by an (S,F) pair, where S is a finite set, and F is a set of subsets
of S, which satisfies some axioms. This concept was first used by Hessler Whitney in 1933. Our goal with
this concept is to understand certain properties of groups or rings in a more generic way. In particular, a
matroid is a generalization of linear independency.

Another approach describes matroids as structures for which, for any weight function, the greedy algo-
rithm gives a good solution. It is well known that if we want to find a maximum-weight spanning tree in a
simple connected graph, with a weight function on its edges, we would use a greedy algorithm: We choose
edges one by one, always the biggest one possible, with one thing in mind: after each step we want to have
a forest. It is easy to see that this indeed gives us a maximum-weight spanning tree. However, in a bipartite
graph, if we want to find a maximum-weight pairing, this greedy approach will not work. This gives us the
question, what are the needed properties for a greedy algorithm to work well. To discuss this, we need to
define what exactly is a greedy algorithm, but we will not dive into that now, we will define matroids in the
original way, suggested by Whitney.

1.1 Independency axoims and the rank

Definition 1.1. Let S be a finite set and F is the set of the so-called independent subsets of S. We call
the pair M = (S,F) matroid, if F satisfies the following three axoims:

1. ∅ ∈ F .

2. If X ⊆ Y and Y ∈ F , then Y ∈ F

3. For every X ⊂ S subset, all K ∈ F , for which K ⊂ X and K is the maximal in X, have the same
number of elements

By the third independency axiom, it is clear that for any X ⊂ S, the cardinality of its maximal indepen-
dent subsets is equal. This motivates the following definition.

Definition 1.2. We call the rank function of a matroid the following r function:

r(X) := max(|Y | : Y ⊆ X and Y ∈ F) (1)

The previous definition makes it clear that r is well defined.
We call a maximal independent set basis. The matroids rank will be the cardinality of it’s basis. It is

easy to see that a set will be independent if and only if it is a subset of a basis.

1

1.2 Oracle complexity

We already saw that a matroids independent subsets are from the subsets of its ground set. However, there
are exponentially many subsets, so if we want to store the information about which subsets are independent,
this might require an exponentially large space. This idea makes the next approach more understandable.

Let us say that we have a ground set and we know there is a matroid on it, but we know nothing about
it. However, there is an oracle that knows everything about this matroid, as well as its independent subsets.
We can ask the oracle a set to our liking, and the oracle answers this by saying if it is independent or not.
Our goal is to find out some information about the matroid, and we want to do this with the fewest number
of question possible.

However, there are other types of oracles. The previously defined oracle is called the independency oracle.
There is an another oracle, with answers with yes and no, the basis oracle. To ask the oracle, we again ask
a subset to our liking, and then the oracle’s answer depends on wether the set is a basis or not.

There is also an oracle, which is not a 2-bit oracle. This one is called the rank oracle. We again ask a
subset, but this time the oracle answers, with the rank of the set.

It is easy to see that the rank oracle is stronger than the independency oracle, since X ∈ F if and only
if r(X) = |X|. However, there is even more connection between the rank and independency oracle.

2 Matroid intersection problem

The matroid intersection problem is one of the most fundamental problems of combinatorial optimalization.
Given two matroids M1 = (S,F1) and M2 = (S,F2), where |S| = n. The goal is to find an X ∈ F̧1 ∩ F2

with the highest possible cardinality, denoted by r. This problem generalizes some important combinatorial
optimization problems, such as bipartite matching, packing spanning trees, or arborecsenses in directed
graphs. Furthermore, it also has applications in electrical engineering.

Starting with the works of Edmunds, many algorithms with polynomial query complexivity have been
studied. Edmunds developed the first polynomial query algorithm, with O(n4) independence oracle queries.
After him, Lawler gave an algorithm that requires O(nr2) queries. In 1986, Cunningham represented an

algorithm that reduced the number of required queries to O(nr
3
2).

Theorem 2.1. Given two matroids M1 = (S,F1), M2 = (S,F2). We can find a maximum common
independence set with 3n− 1 independence oracle queries if r(M1) = r(M2) = 2.

Theorem 2.2. There exists a bad entity, which can prevent us from finding a common independent set in
less than 2n queries.

Finding a maximal independent set of the intersection turned out to be really difficult even with the rank
restrictions. Therefore, in this semester, we shifted our focus to finding a basis in a matroid.

3 Finding a basis

3.1 Independence Oracle

Theorem 3.1. We can find a basis with n queries using the independence oracle.

This is a well-known fundamental result of matroid theory. It comes from the theorem that the greedy
algorithm works well on matroids. This gives us an upper bound for the number of oracle calls needed, but
what can we say about the lower bound?

Claim 3.2. There is no algorithm that uses at most n− 1 queries.

Proof. Let M1 = (F , S), where F = {∅}, and let M2 be a matroid with exactly one independent element.
We will prove that we cannot distinguish these two matroids from each other in at most n− 1 queries.

2

Before starting the algorithm, we can assume that an entity helps us by telling us that every set with
cardinality at least 2 is dependent. Therefore, we only ask about sets that contain exactly one element.

However, it can happen that for the first n− 1 questions we get the answer no. Therefore, we found at
most n− 1 many dependent elements, but there is still at least one element, which can still be independent
or dependent.

Since we cannot distinguish M1 and M2 in at most n− 1 queries, there is no algorithm that finds a basis
using at most n− 1 queries.

Remark 3.3. Note that in the previous theorem we did not make any conditions on the matroid itself.
For example, if we know that the rank of the matroid is 1, we can find a basis with n− 1 queries. To do

this, we ask about the elements one by one. After n− 1 queries, we either got a yes answer, in this case we
just found a basis, or all answers were no. However, since the rank of the matroid is 1, therefore, the only
remaining element, which we did not ask about yet, must be independent, so that is a basis.

Note that this idea works for any assumption, where we know the rank of the matroid. We just run
the greedy algorithm, and after n − 1 we either already have an independent set of size r or we have an
independent set of size r−1. However, in the latter case, we know that by adding the last remaining element
to the set of size r − 1 we must have a basis.

In a later result, we will also see that for some r, where we know that the rank of the matroid is r, there
exist even faster algorithms, to find a basis.

3.2 Rank oracle

Claim 3.4. If there is an algorithm that uses k independence oracle calls to answer a problem, then there
exists an algorithm that uses k rank oracle calls to answer the same question.

This claim comes from the fact that the rank oracle is stronger than the indepence oracle. What does
stronger mean in this case?

An X ⊂ S is independent if and only if r(X) = |X|. Therefore, with every rank oracle call, we can also
decide if the given set is independent or not.

Corollary 3.5. We can find a basis using n rank oracle calls. If we know the rank of the matroid, we can
also do it in n− 1 queries.

However, this result can be strengthened since the rank oracle is stronger than the independence oracle.

Claim 3.6. Given a matroid with a rank of 1. We can find a basis, which in this case is an independent
element, in ⌈log(n)⌉ queries. However, this upper bound is also sharp.

Proof. We will repeat the following step:
If we want to find an independent element in the set R we ask about the set T , where T ⊂ R and

|T | = ⌈|R|/2⌉.
If r(T) = 1, then we repeat this step on the set of T instead of R.
If r(T) = 0, then we repeat this step on the set R− T .
In this algorithm, in each step we halve the number of elements which we are interested in, so it takes

⌈n/2⌉ steps to finish.
However, there is no algorithm that can find an independent element in less than ⌈n/2⌉ queries.
We can illustrate the running of the algorithm in a decision tree. In this case, since the rank of the

matroid is 1, every set has a rank of 0 or 1, therefore, every edge has 2 outgoing edges at most.
Now, let us estimate how many leaves the tree must have. There are exactly n many matroids that have

exactly one independent element. However, each of these matroids must go by a different path in the tree
when we run the algorithm, otherwise we could not distinguish two such matroids. Therefore, the number
of leafs must be at least n.

However, since each edge has at most two outgoing edges, the depth of the decision tree must be at least
⌈log2(n)⌉.

3

Following the same idea, we can make lower and upper bounds on the number of queries needed to find
a basis in matroids of rank r, using rank oracle.

Claim 3.7. Given a matroid with a rank of r. We can find a basis in r · ⌈log2(n)⌉ queries. There is no
algorithm that finds a basis in less than ⌈logr+1(

(
n
r

)
)⌉.

Proof. First, we will prove the lower bound. We follow the same idea, when we had a matroid with rank of
1.

This time in the decision tree each tree has at most r + 1 outgoing edges. The number of leafs must be
at least

(
n
r

)
, since there are

(
n
r

)
many matroids of rank r with exactly one basis, and each of these matroids

must have a different path in the decision tree.
Therefore, the depth of the decision tree must be at least ⌈logr+1(

(
n
r

)
)⌉.

Now we will show an algorithm that uses r · ⌈log2(n)⌉ many rank oracle queries to find a basis.
In the first step, we will find an independent element. We do this on by same principle as in 3.6. This

time we halve T , if r(T) ≥ 1 everything else works in the same way.
With this we found an independent element e1 and let I1 = {e1}. Now we want to find an element

e2 ∈ S − I1, for which I1 + e2 is independent.
We do this with the same process with a slight difference. The (i+ 1)th step works the following way:
If we want to find the next element in the set R we ask about the set T + Ii, where T ⊂ R and

|T | = ⌈|R|/2⌉.
If r(T + Ii) ≥ i+ 1, then we repeat this step on the set of T instead of R.
If r(T + Ii) = i, then we repeat this step on the set R− T .
This will give us an element ei+1, for which Ii + ei+1 := Ii+1 is independent.
Repetition of this step r times yields an independent set with size r, which is a basis.
The running time of this algorithm is r · ⌈log2(n)⌉, since in each step we made log2(n) oracle calls.

Fortunately, this algorithm can be improved. So far, we really did not use the rank of the matroid. We
just found the elements one by one, which is the fastest if the rank is 1, but not when the rank is greater.

Claim 3.8. Given a matroid of rank r. We can find a basis with at most r · (log⌈n
r ⌉+ 1) queries.

Proof. First, we divide the ground set S into r disjoint sets of the same size. Let us call these sets S1, S2, ..., Sr.
The ith step of the algorithm works the following way:
First, we have an independent set Ii−1, which we want to expand. At i = 0, Ii−1 = {∅}
First we ask for the rank of Ii−1 + Si.
If r(Ii−1 + Si) ≥ r(Ii−1), then we find a set Ri ⊂ Si with a size of r(Ii−1 + Si) − r(Ii−1), such that

Ii−1 +Ri is independent. Then Ii = Ii−1 +Ri. And we go to the i+ 1th step.
We can do this by the same principle that we used in 3.7, with (r(Ii−1 + Si)− r(Ii−1)) · log2(|Si|) many

oracle calls.
If r(Ii−1 + Si) = r(Ii−1), this means that Ii−1 is already a maximal independent set in Ii−1 + Si, so we

can continue with the i+ 1th step, where Ii = Ii−1.
After n steps we will find a basis Ir. How many oracle calls did we make?
In the second case, we made 1 oracle call. In the first case, we made (r(Ii−1+Si)−r(Ii−1)) · log2(|Si|)+1

oracle calls.
However, log2(|Si|) ≤ log⌈n

r ⌉, by construction. So, the number of oracle calls is not greater than∑r
i=1(r(Ii−1 + Si)− r(Ii−1)) · log⌈n

r ⌉+ 1.
Note that

∑r
i=1(r(Ii−1 + Si)− r(Ii−1)) = r(Ir)− r(∅) = r.

Therefore, the number of oracle calls is at most r · (log⌈n
r ⌉+ 1).

Remark 3.9. Note that r · (log⌈n
r ⌉ + 1) ≤ n only if r ≤ n/2. Therefore, this previous algortihm is slower

than the greedy algorithm, for r > n/2.

Claim 3.10. Given a matroid of rank r. We can find a basis with at most (n− r) · (log⌈ n
n−r ⌉+ 1) queries.

4

Proof. The algorithm for this result works in a similar way as in 3.2. In the previous proof, we always wanted
to expand an independent set one by, until it had a size of the basis. In this case, we want to eliminate
elements one by one in such a way that the size of the largest independent set of the remaining set does not
decrease.

Divide the ground set S into (n− r) many sets which have the same cardinality.
Let I0 = ∅.
In the ith step we, do the following:
We ask r(Ii−1 + Si). If r(Ii−1 + Si) = |Ii−1 + Si|, we move to the i+ 1th step, otherwise, we know that

we can eliminate some elements in Si. Then let T ⊂ Si, where |T | = ⌈|S|/2⌉. Next, we ask r(Ii−1 + T).
If r(Ii−1+T) < |Ii−1+T |, then we continue with halving T now instead of Si and ask the same question.
If r(Ii−1+T) = |Ii−1+T |, then we halve S−T into R, but also in the next question we ask r(Ii−1+T+R),

instead of asking the rank of Ii−1 +R.
In this way using log(|Si|) we can eliminate one element of Si, such that in the remaining set the size of

the largest independent set does not decrease.
Therefore, with (n− r)(log(n

n−r) + 1) rank queries we can reduce the size of the remaining set to r, so it
will be independent.

3.2 together with 3.2 ensures that we can find a basis with at most n many rank oracle queries, and if
r ̸= n/2 then this is strictly faster.

Note that in 3.2 we can replace the rank oracle with the independence oracle. This gives us the following
result.

Claim 3.11. Given a matroid of rank r. We can find a basis using (n − r)(log(n
n−r) + 1) independence

oracle calls.

Remark 3.12. Note that 3.11 uses less oracle calls than the greedy algorithm.

4 Different oracles, and their connection

We mainly focused on the independent and rank oracles. However, different oracles might become useful in
different problems, so it is important to understand the fundamentals of the connection with some of the
fundamental oracles.

We examine some fundamental results from [2].

Definition 4.1. Let S be a ground set and M be a matroid on S. I list some concepts without a precise
definition:

circuit = minimal dependent set
spanning set = superset of a basis
girth = girth(F) = min{|C| : C ⊂ F,C dependent} if it is meaningful, ∞ otherwise
closure = closure(F) = {e ∈ S : r(S + e) = r(S)}
flat = set which equals its closure
hyperplane = maximal flat different from S

Definition 4.2. The independence, basis, circuit, spanning, flat, hyperplane oracles are a mapping of 2S

into {Y ES,NO}.
The rank and girth oracles are mappings into {0, 1, ..., |S|,∞}.
The closure oracle is a mapping into 2S .

Theorem 4.3. The girth oracle is stronger than the independent oracle. The rank, independent, spanning
and closure oracles are polinomially equivalent. The basis, flat, hyperplane, circuit oracles are weaker than
the independent oracle.

5

4.1 Port oracle

In [2] the port oracle was not studied, therefore, in the following part we look at some results about the port
oracle from [1].

Definition 4.4. Let M be a matroid with a distinguished element e. The port of M with respect to e is
the set of circuits of M containing e.

A port oracle for M with respect to e reports whether or not a given subset contains a circuit containing
e.

In [1] they present two port oracle algorithms for two problems. First, they show how to compute an
e-based ear decomposition of a matroid.

Definition 4.5. A partial ear decomposition of a matroidM is a nonompty sequence C1, C2, ..., Ck of circuits
of M such that for every i ∈ {2, ..., k} the following thhree properties hold:

1. C ∩ (C1 ∪ ... ∪ Ci−1) ̸= ∅

2. C − (C1 ∪ ... ∪ Ci−1) ̸= ∅

3. no circuit C ′
i of M setisfying the first two properties also has C ′

i − (C1 ∪ ...∪Ci−1) properly contained
in Ci − (C1 ∪ ... ∪ Ci−1)

An ear decomposition of a M is a partial ear decomposition in which C1 ∪ ... ∪ Ck = S

Claim 4.6. Let M be a matroid and e an element of the ground set S. There exists an algorithm that finds
an e-based ear decomposition with O(|S|2) port oracle calls.

Using that ear decomposing algorithm as a subroutine, we can also simulate an independence oracle.

Claim 4.7. Let M be a matroid on the ground set S. There exists an algorithm that can answer the question:
Is F independent?, where F ⊂ S, and the algorithm uses O(|S|4) many port oracle calls.

These results show us that the port oracle is polinomially equivalent to the independence oracle. However,
since it takes O(|S|4) port oracle calls to simulate an independence oracle call, this oracle is not really useful
when it comes to finding a basis.

References

[1] Collette R Coullard and Lisa Hellerstein. Independence and port oracles for matroids, with an application
to computational learning theory. Combinatorica, 16(2):189–208, 1996.

[2] Dirk Hausmann and Bernhard Korte. Algorithmic versus axiomatic definitions of matroids. In Mathe-
matical Programming at Oberwolfach, pages 98–111. Springer, 2009.

6

	Introduction to matroids
	Independency axoims and the rank
	Oracle complexity

	Matroid intersection problem
	Finding a basis
	Independence Oracle
	Rank oracle

	Different oracles, and their connection
	Port oracle

