Oracle complexivity of matroid intersection

Viktor Csaplár Supervisor: Kristóf Bérczi

Definition

Let S be a finite set, and let \mathcal{F} be the set of the so-called *independent* subsets of S. We call the pair $\mathcal{M} = (S, \mathcal{F})$ matroid, if \mathcal{F} satisfies the following three axoims:

- $\emptyset \in \mathcal{F}$
- If $X \subseteq Y$ and $Y \in \mathcal{F}$, then $X \in \mathcal{F}$
- For every X ⊆ S subset, all K ∈ F, for which K ⊆ X and K is maximal in X, have the same cardinality

Definition

We call r the rank function of the matroid, if $r(X) := max(|Y| : Y \subseteq X \text{ and } Y \in \mathcal{F})$

- There are more then $poly(|\mathcal{S}|)$ different matroids
- An oracle knows the matroid
- In a subroutine we can give the oracle any subset, and it returns yes or no, depending on if the subset is independent or not
- Rank oracle...

- Given two matroids $\mathcal{M}_1 = (\mathcal{S}, \mathcal{F}_1)$ and $\mathcal{M}_2 = (\mathcal{S}, \mathcal{F}_2)$, over the same ground set
- Goal: find an $X \in F_1 \cap F_2$ with the highest possible cardinality
- Known results:
 - Upper bound: $\mathcal{O}(nr^{\frac{3}{2}})$
 - Lower bound: $(log_23)n o(n)$ for r = n/2

Theorem $(r \leq 1)$

Given two matroids $\mathcal{M}_1 = (\mathcal{S}, \mathcal{F}_1)$ and $\mathcal{M}_2 = (\mathcal{S}, \mathcal{F}_2)$ over the same ground set, with rank at most 1. No algorithm that performs fewer than 2n queries can solve the problem. However, there exists an algorithm, using 2n queries.

Theorem $(r \leq 2)$

Given two matroids $\mathcal{M}_1 = (\mathcal{S}, \mathcal{F}_1)$, $\mathcal{M}_2 = (\mathcal{S}, \mathcal{F}_2)$. There is an algorithm to find a maximum common independence set, using 3n - 1 independence oracle queries, if $r(\mathcal{M}_1) \leq 2$ and $r(\mathcal{M}_2) \leq 2$.

Theorem

We can find a basis with n queries using the independence oracle.

Theorem

There is no algorithm that uses at most n - 1 queries.

Theorem

Given a matroid with rank of 1. We can find a basis, which in this case is an independent element, requiring $\lceil log(n) \rceil$ queries. This upper bound is also sharp.

Theorem

Given a matroid with rank of r. There exists an algorithm, that requires $r \lceil log(n/r) + 1 \rceil$ queries, at most to find a basis.

Theorem

Given a matroid with rank of r. There exists an algorithm, that requires $(n-r) \lceil log(n/n-r) + 1 \rceil$ queries, at most to find a basis.

Theorem

Given a matroid with rank of r. There exists an algorithm, that requires $(n-r) \lceil \log(n/n-r) + 1 \rceil$ queries, at most to find a basis. Note, that for $r \geq \frac{n}{2}$ this algorithm is faster than the greedy algorithm.

Thank you for you attention