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ABSTRACT. We provide both upper and lower bounds for Sidon
sets. First, we establish an upper bound for Sidon subsets of the set
{1,...,n}. Then, using a specific construction, we demonstrate the
existence of a Sidon set of size p—1 for a prime p. This construction
also allows us to derive a lower bound for Sidon sets consisting of
prime numbers less than n.

1. INTRODUCTION

Definition 1.1. A subset S C Nis called a Sidon set if for all a, b, ¢, d €
S, the equation a + b = ¢ + d implies that {a,b} = {c,d}. In other
words, all pairwise sums of elements in S are distinct.

Let s(n) denote the maximum number of elements in a Sidon subset
of {1,...,n}. We now give upper and lower bounds for s(n).

Theorem 1.2. Let S C {1,...,n} be a Sidon set and let s(n) = |5)|.
Then

s(n) <vn++v/n+1.

Proof. The following proof is taken from Erdés and Suranyi’s book,
Topics in the Theory of Numbers |1]. We divide the interval [0, n] into
n + t subintervals as follows:

[—t+ 1,0, [-t+2,1],...,[n,n+t—1].

Assume that Aq,..., A, are the number of elements from the Sidon
set S that fall into these intervals. That is, A; = [SN[i —t,i — 1]|.
For each element s € S, it appears in exactly ¢ consecutive intervals.
Therefore, Z?jlt A; =ts. We now count the number D of pairs (a;, a;

with ¢ > 5 which fall in the above intervals. Clearly,

n+t n+t n+t

1 1
D=7} (&) :5214?—52141
=1 =1 =1
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On the other hand, if the difference of a pair of elements is a; — a; = d,
then this pair falls within ¢ — d intervals. Since the differences of pairs
from Sidon set are distinct, then each d can occur at most once. Hence,

Dgia—d):t(t;l)

Comparing the above two results, we get

n+t n+t

AT Ai<i(t—1) (1)

By Cauchy-Schwartz inequality, we have

L (S
T n+t

Substituting into inequality (1) and multiplying by “tt both sides, we
get:

52—3(?“) - <?+1> (t—1)<0
For the values of s satisfying this second-degree inequality, we have

n 1 n? n 3
s<—+otsn+t)+——— 5 —

TR w2 2 1
2 sty (2 Ny (2)
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We now choose t = v/n3 + 1, then the first term on the right-hand

1

side is less than 5+v/n, while the last term is less than the square of

Vi ivn+ 3. .

To give a lower bound, we present two clever constructions. Consider
a modified version of Erdgs and Turan’s construction [2].

Theorem 1.3. There exists a Sidon set S C {1,...,n} such that

5| > 4

Another construction due to Ruzsa [3] improves the constant }l.

Theorem 1.4. Let p be a prime number. Then there exists a Sidon
set in the set Zy2_, with exactly p — 1 elements.



SIDON SETS 3

Proof. Let g be a primitive element modulo p. Consider the following
system of congruences:

r=1 (modp-—1),
r=g¢" (mod p).

By the Chinese Remainder Theorem, this system has a unique solution
modulo p? — p. Denote this solution by a;. We will show that the
elements ay, ..., a, 1 form a Sidon set modulo p? — p. In other words,
the congruence

a; +as = a, +a; (mod p? — p)

has only trivial solutions where {a;, as} = {a,,a;}. This means there
is for any c there is exactly one 7 and j such that

c=a;+a; (mod p*—p)
Due to the condition of a;, we have
{czi—i—j (mod p — 1),
c=g¢"+¢° (modp).
By Fermat’s little theorem, we have
9°=g'¢’ (mod p)
from the first congruence. We now consider the quadratic equation
(x—gYo—g)=2"—(¢"+¢)r+g 7 =2>—cx+g¢° (mod p).

This implies that the residue classes (¢*), and (g7), are uniquely defined
since these are the roots of the quadratic equation.

By assigning a congruent natural number to each residue class mod
(p* — p), we may get a Sidon set in {1,2,...,p* — p}. Thus, if n is of
the form p? — p, we see that

S(n)Zp—l=%(V4n+1—1)>\/ﬁ—l.
U

Continuing this process, we give a lower bound for a Sidon set that
contains only primes less than n. Denote it by S(P). Let P be the
set of prime numbers, and let A C Z,._, be a Sidon set with p — 1

elements, as constructed above. For ¢ € Z,2_,, define the shifted set

A+c:={a+c:ae€A}
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Then A+c¢ C Z,»_, and is also a Sidon set. Therefore, we obtain p* —p

Sidon sets in Z,2_,, namely:
A A+L .., A+(p*—p—1).
Every prime g € PP appears in exactly p — 1 of these sets. Thus,
2
p —p)p—1
S (BBl = {(0.0) - € (ko)) = 7(* —p)-(p-1) ~ L DD,
el log(p® — p)

where we have used the Prime Number Theorem approximation |P N
2

1,0 = pll = ey
By the pigeonhole principle, there exists some ¢ € Z,2_, such that

. p—1
Since p? — p < n, it follows that
pél—i— n—i—l.
2 4

On the other hand, by a result of Baker, Harman and Pintz [4], for
sufficiently large n, there exists a prime between N and N + N, where
d = 0.525. Applying this result with N = y/n, we can choose a prime

p such that
V1 —n®2% < p<
Therefore, we can express the right-hand side in terms of n as follows:

_ 02625
(A+iynp| > VI
logn

We are currently trying to obtain a non-trivial upper bound for Sidon
sets containing only primes which is subset of {1,2,..., N}.
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