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Abstract. We provide both upper and lower bounds for Sidon
sets. First, we establish an upper bound for Sidon subsets of the set
{1, . . . , n}. Then, using a specific construction, we demonstrate the
existence of a Sidon set of size p−1 for a prime p. This construction
also allows us to derive a lower bound for Sidon sets consisting of
prime numbers less than n.

1. Introduction

Definition 1.1. A subset S ⊆ N is called a Sidon set if for all a, b, c, d ∈
S, the equation a + b = c + d implies that {a, b} = {c, d}. In other
words, all pairwise sums of elements in S are distinct.

Let s(n) denote the maximum number of elements in a Sidon subset
of {1, . . . , n}. We now give upper and lower bounds for s(n).

Theorem 1.2. Let S ⊆ {1, . . . , n} be a Sidon set and let s(n) = |S|.
Then

s(n) <
√
n+ 4

√
n+ 1.

Proof. The following proof is taken from Erdős and Surányi’s book,
Topics in the Theory of Numbers [1]. We divide the interval [0, n] into
n+ t subintervals as follows:

[−t+ 1, 0], [−t+ 2, 1], . . . , [n, n+ t− 1].

Assume that A1, . . . , An+t are the number of elements from the Sidon
set S that fall into these intervals. That is, Ai = |S ∩ [i − t, i − 1]|.
For each element s ∈ S, it appears in exactly t consecutive intervals.
Therefore,

∑n+t
i=1 Ai = ts. We now count the number D of pairs (ai, aj

with i > j which fall in the above intervals. Clearly,

D =
n+t∑
i=1

(
A2

i

)
=

1

2

n+t∑
i=1

A2
i −

1

2

n+t∑
i=1

Ai
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On the other hand, if the difference of a pair of elements is ai−aj = d,
then this pair falls within t− d intervals. Since the differences of pairs
from Sidon set are distinct, then each d can occur at most once. Hence,

D ≤
t−1∑
d=1

(t− d) =
t(t− 1)

2

Comparing the above two results, we get
n+t∑
i=1

A2
i −

n+t∑
i=1

Ai ≤ t(t− 1) (1)

By Cauchy-Schwartz inequality, we have
n+t∑
i=1

A2
i ≥

(∑n+t
i=1 Ai

)2
n+ t

=
t2s2

n+ t

Substituting into inequality (1) and multiplying by n+t
t2

both sides, we
get:

s2 − s
(n
t
+ 1

)
−
(n
t
+ 1

)
(t− 1) ≤ 0

For the values of s satisfying this second-degree inequality, we have

s ≤ n

2t
+

1

2
+ s(n+ t) +

n2

4t2
− n

2t
− 3

4

=
n

2t
+

1

2
+ s(n+ t) +

(
n

2t
− 1

2

)2

− 1 (2)

We now choose t =
4
√
n3 + 1, then the first term on the right-hand

side is less than 1
2

4
√
n, while the last term is less than the square of√

n+ 1
2

4
√
n+ 1

2
.

□

To give a lower bound, we present two clever constructions. Consider
a modified version of Erdős and Turán’s construction [2].

Theorem 1.3. There exists a Sidon set S ⊆ {1, . . . , n} such that

|S| ≥
√
n

4
.

Another construction due to Ruzsa [3] improves the constant 1
4
.

Theorem 1.4. Let p be a prime number. Then there exists a Sidon
set in the set Zp2−p with exactly p− 1 elements.
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Proof. Let g be a primitive element modulo p. Consider the following
system of congruences:{

x ≡ i (mod p− 1),

x ≡ gi (mod p).

By the Chinese Remainder Theorem, this system has a unique solution
modulo p2 − p. Denote this solution by ai. We will show that the
elements a1, . . . , ap−1 form a Sidon set modulo p2 − p. In other words,
the congruence

ai + as ≡ ar + aj (mod p2 − p)

has only trivial solutions where {ai, as} = {ar, aj}. This means there
is for any c there is exactly one i and j such that

c ≡ ai + aj (mod p2 − p)

Due to the condition of ai, we have{
c ≡ i+ j (mod p− 1),

c ≡ gi + gj (mod p).

By Fermat’s little theorem, we have

gc ≡ gigj (mod p)

from the first congruence. We now consider the quadratic equation

(x− gi)(x− gj) = x2 − (gi + gj)x+ gi+j ≡ x2 − cx+ gc (mod p).

This implies that the residue classes (gi)p and (gj)p are uniquely defined
since these are the roots of the quadratic equation.

By assigning a congruent natural number to each residue class mod
(p2 − p), we may get a Sidon set in {1, 2, . . . , p2 − p}. Thus, if n is of
the form p2 − p, we see that

S(n) ≥ p− 1 =
1

2
(
√
4n+ 1− 1) >

√
n− 1.

□

Continuing this process, we give a lower bound for a Sidon set that
contains only primes less than n. Denote it by S(P). Let P be the
set of prime numbers, and let A ⊂ Zp2−p be a Sidon set with p − 1
elements, as constructed above. For c ∈ Zp2−p, define the shifted set

A+ c := {a+ c : a ∈ A}.
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Then A+c ⊂ Zp2−p and is also a Sidon set. Therefore, we obtain p2−p
Sidon sets in Zp2−p, namely:

A, A+ 1, . . . , A+ (p2 − p− 1).

Every prime q ∈ P appears in exactly p− 1 of these sets. Thus,∑
c∈Zp2−p

|(A+c)∩P| = |{(q, c) : q ∈ (A+c)∩P}| = π(p2 − p)·(p−1) ≈ (p2 − p)(p− 1)

log(p2 − p)
,

where we have used the Prime Number Theorem approximation |P ∩
[1, p2 − p]| ≈ p2−p

log(p2−p)
.

By the pigeonhole principle, there exists some i ∈ Zp2−p such that

|(A+ i) ∩ P| ≥ p− 1

log(p2 − p)
.

Since p2 − p ≤ n, it follows that

p ≤ 1

2
+

√
n+

1

4
.

On the other hand, by a result of Baker, Harman and Pintz [4], for
sufficiently large n, there exists a prime between N and N +N δ, where
δ = 0.525. Applying this result with N =

√
n, we can choose a prime

p such that √
n− n0.2625 < p ≤

√
n.

Therefore, we can express the right-hand side in terms of n as follows:

|(A+ i) ∩ P| ≥
√
n− n0.2625

log n
.

We are currently trying to obtain a non-trivial upper bound for Sidon
sets containing only primes which is subset of {1, 2, . . . , N}.
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