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1 Motivation and Goals
As the use of artificial intelligence becomes more and more popular, a demand
appears to provide an explanation of the prediction.

It becomes important that our models not only achieve good results, but
also provide an explanation using the input as information.

While in the computer vision and natural language processing do-
mains using Transformers [Transformers] gives a simple tool for providing
explanation, with the attention maps; in the domain of time series, it is not
clear what explanation could be well interpretable.

An additional advantage of exploring interpretability methods is that, while
we are trying to find easily interpretable information, and as we are trying to
build a model which provides this information, we might inadvertently transform
in a way that is easier to deal with for our model.

My goal is to explore and compare classical interpretability methods with
deep learning-based ones.

Then, inspired by these approaches, I aim to develop my own original method(s)
and compare them to the already existing ones.

2 Interpretability in machine learning

2.1 The concept of interpretability
As machine learning tools improve, they make decisions in a more complex way,
which is harder for humans to interpret.

There are models that are easily interpretable by themselves, for example,
decision trees, where we have access to the questions evaluated in the node,
based on which the decision is made. When the models are interpretable by
design, they are called white-box models. However, in the case of the more
complex models, for example, the neural nets and transformers, it is harder to
interpret which parts of the input were more important for the prediction and
which parts influenced the decision-making. These kind of models are often
called black-box models. The aim of interpretability of the machine learning
models is that the decisions made by the model can be better interpreted by
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humans. This interpretability could stem from the model building, so that
we use components that provide interpretability. Moreover, it can stem from
methods which employ subsequent interpretation, which is designed to provide
insight into the functioning of an already trained model.

2.2 An important black-box model: neural nets and their
interpretability

The topic of my thesis revolves around neural networks; thus in this subsec-
tion I elaborate on the questions connected to interpretability, before I dis-
cuss the main topic of the thesis, the interpretability of time series data. Dol-
gozatunk témája a neuronhálók köré szerveződik, ezért ebben az alfejezetben
részletsebben bemutatom az ehhez kapcsolódó interpretálhatósági kérdéseket,
mielőtt dolgozat fő témájára, az idősoros modellek interpretálhatóságára térek.

2.2.1 Computer vision

In the world of computer vision, there are various available interpretability tools.
The most famous method is the Grad-CAM [3], which, after the classification
of an instance, calculates the derivative for the most probable class, with respect
to the input. This way it can give a heat-map which depicts which parts of the
input were most significant for predicting this class.

The segmentation of cancerous cells by itself can also employ an inter-
pretability method, since our task is to isolate the sick parts, and this by itself
provides evidence for the disease.

3 The interpretability of time series models
Time series, in their simplest form, are sequential records of measurements in a
process. Therefore, time series can be used in diverse fields. Time series can be
used to describe cardiac rhythm, processes of the stock market, and even the
vibrations of a drill bit, which processes differ fundamentally. These are popular
and widely used modeling tools, thus, they are popular targets of the machine
learning models.

As in every other domain, a demand emerged for the interpretability of time
series data over the years.

3.1 Time series and associated modeling concepts
To be able to talk about the interpretability of time series in machine learning
models, we first have to define a few basic concepts and understand the nature
of time series.
Time series in their simplest form are sequential records of simple observations
of a process.
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Definition 3.1 (Time series). The series of ordered recordings X = {x1, x2, . . .}
is called a time series if xt was recorded at the specific time t, t ∈ T , where T is
the index set of the time series. We require set T to be orderable.

If T is discrete, it is called a discrete time series, and if it is an interval T
(e.g. [0, 1]), then it is called a continuous time series. We usually consider the
recorded xt values to be records of a stochastic process, thus the realization of
an Xt random variable.

In case of discrete time series, the records are usually taken at regular inter-
vals, however, there are time series in which the records are taken at variable
sampling/recording frequency. In the latter case, the time stamp may also be
included in the time series.
Accordingly, one of the key properties of the time series is that the records are
collected at consecutive time points, either discrete or continuous.

Diverse problems can arise regarding time series. Firstly, the problems
of time series analysis which includes the exploration and understanding of
the underlying processes of the time series. Moreover, explicit modeling and
prediction tasks can also be formulated.

Task 3.1 (Autoregressive prediction task).
Given a time series X = (x1, x2, x3, . . . , xn) we are looking for a function which
if given x1, . . . , xk−1 (k ∈ N+) pattern, predicts xk’s value or it’s distribuion.

Autoregression means that we infer the value of xk from previous values. A
specialty of time series is that we nearly always assume a connection between the
value of xk and the previous values. The nature of the dependence is specified
by the model family, although it is most frequently a linear relationship.

Task 3.2 (Time series analysis).
For a given X = (x1, x2, x3, . . . , xn) time series, we aim to choose the appro-
priate model family which generated the time series and to determine the
characteristic properties of this family. These properties for example could be
seasonal trends, their periods, and their increasing trend.

These two tasks aren’t disjoint. For that we can execute the prediction, we
need to model the time series. The time series analysis could help us choose
the model family, and only after we choose the model from this family which
possesses the best parameter can we make predictions.

I would like to emphasize here that, while choosing the model family behind
our time series, we implicitly select the prediction model as well.

In my thesis work, I refer to the time series generating process and also to
the machine learning method, which executes the prediction task as a ’model’.

3



At first glance, these two concepts seem hardly related, however, the aforemen-
tioned perspective connects them. Once we select the model family, the fitting
of the machine learning method includes the optimization of the parameters of
the model family, and there will be one model that we use for the prediction.

3.1.1 Examples and their connection to interpretability

In this subsection I would like to demonstrate the diversity of time series and
their connection to the topic of my thesis work. With the diversity of inter-
pretable information I would like to demonstrate the many options for inter-
pretability.

Example 3.1 (Daily temperature). The most natural discrete time series in
the field of meteorology is the records of the temperature.
TA seasonal trend can be observed in this time series: summers are warmer,
winters are cooler.
The trigonometric functions are suitable for effective modeling of these seasonal
trends: Xt = cos(t/5)+Zt, where cos(t/5) provides the seasonality.Zt is a ran-
dom variable with expected value of 0, which is intended to account for random
fluctuations.

In the example of 3.1. we observe a periodic trend in the recorded temper-
atures, namely that in the summers it is hotter, and in the winters it is colder.
Our interpretation of periodicity comes from our understanding of seasons, and
this periodicity is what’s represented by choosing a trigonometric function to
be included in the model.

When we are modelling the evolution of a stock on the stock market, we often
model it as a continuous time series. However, a stock’s value rarely depends
on which season we are in, so there is no periodic component, but there might
be an increasing one.

Example 3.2 (The evolution of a stock). The evolution of a stock is often
modeled with the family: Xt = mt +Zt, where mt is some monotone increasing
component, and Zt is the component for the random fluctuations.

In the 3.2. example we identify that there is a component which is monotone
growing, and approximating mt is what gives us interpretability. Although in
real life a stock’s price’s evolution is a much more complex process, I wanted to
demonstrate where interpretability can come from.

Since the processes of stock-market are more complecated, there are count-
less approaches and models. The first intuition is that the next value of a stock
depends on its current value and a few of its previous values, since the mem-
bers of the market would rather invest if the currency rate increases, and the
currency rate increases further at the stock market
It is more realistic to model it by considering that the previous currency rates
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influence the progression of the current currency rate. And with that, we ar-
rived at the autoregressive models, where the current currency rate depends on
the previous ones.

Example 3.3 (Linear autoregression model). Let X1, X2, . . . be random vari-
ables and p ∈ N+. Let the following relationship hold true between the variables:

Xt =

p∑
i=1

φiXt−i + ϵt,

where φ1, . . . , φp ∈ R are the model’s variables, and ϵt is a white noise variable
(with 0 mean, and finite standard deviation). We call this the autoregressive
model of order p and we denote it with AR(p).

In this model family, the model fitting is the optimization of the param-
eters of the family. One method for this is the maximum likelihood and the
expectation maximization algorithm, in which the parameter approximation is
performed iteratively.

Though a complex model like this can better describe the behavior of time
series, it is less clear from the perspective of human interpretability what infor-
mation would be easily understandable. One approach would be to determine
the parameters, but these can’t be understood intuitively by humans, hence we
should seek an other method for interpretability.

Instead of a linear we could assume a more complex relationship between
the variables, and under certain circumstances, there is a use case for the fitting
of these model families. Nevertheless, to be able to approximate the parameters
of these more complex models, we need increasingly more complex and compu-
tationally more demanding algorithms, which substantially slow the fitting of
these models.

It is noteworthy to mention some of models based in machine learning.

Example 3.4 (Machine learning based autoregressive models). The machine
learning based autoregressive models are described by:

Xt = f(Xt−1, Xt−2, . . . , Xt−p) + Zt,

where the function f can be a neural net, or even a Transformer model, and
Zt ∼ N(0, σ2), σ < ∞ is the usual white noise variable.
The parameter p determines how many previous observation affects the current
one.

These models are often considered to be black box models, and the model
fitting is done by gradient descent-based methods. In case of these complex
models, the problem of interpretability is not that clear, therefore, we try to
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gain an understanding of the prediction of the fitted model by using numerous
interpretability methods. It is noteworthy that modeling with neural nets is
well-established in multiple ways. Firstly, the aforementioned neural net-based
autoregressive models (?? could be the generative model that generated the time
series. Another reason to use neural nets for modeling time series is that there
are theoretical findings indicating that neural networks are good approximators.
This means that neural nets can effectively approximate any function given that
the neural net can have an infinite width and there is an infinite amount of data.

3.1.2 Event Sequences as Progressions of Snapshots of Time Series

From a time series, especially a continuous time series, one can create a new one
by subsampling at given time points. In real-world monitoring, it is often not
feasible to perform continuous sampling; therefore, most available time series
are actually discretely sampled versions of continuous processes.

In some cases, the exact value of a measurement might not matter, or we
may not be able to measure it precisely. As a result, the domain of the vari-
able Xt may not be continuous, but rather a discrete space. In modeling such
processes, we assume the system is in some state, and the next observed state
depends on the current state and possibly a few preceding ones. If the next
state only depends on a few fixed numbers of previous states, we get some kind
of Markovian process.

In this section, I just present some ideas, and we define them more rigorously
in later chapters.

We call these model event sequences, or event-based modeling, and in my
thesis, they play a central role.

The main challange in this area is to fint well interpretable information.

3.2 Attitudes Toward Interpretability in Time-Series Ma-
chine Learning Models

In this section, I explore different time series interpretability methods based on
the workings of Theissler et. al [4]. Since time series data can be highly diverse,
and it is not always obvious which pieces of information are easily interpretable,
interpretability methods can have a wide variety. In this chapter, I review
various approaches — some of which were already introduced in 2. — and
propose a classification of these methods based on several different perspectives.

3.2.1 Ante-hoc and Post-hoc Methods

Interpretability can appear during model construction or through the analysis
of an already trained model. The former is referred to as ante-hoc, while the
latter is known as post-hoc interpretation.

Ante-hoc models are inherently interpretable due to their structure. A good
example is decision trees. Post-hoc interpretability methods, on the other hand,
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are applied to already trained models and aim to explore what the model has
learned.

A well-known post-hoc method is the calculation of SHAP values.

3.2.2 Global vs. Local Interpretability

Interpretability can also be categorized as global or local.
Global explanations aim to find generalizable rules that apply across the entire
dataset. Local explanations focus on how the model makes a prediction for a
specific instance x.

3.2.3 Model-Specificity

A third option of classification is between model-specific and model-agnostic
methods. Model-agnostic methods can be applied regardless of whether the
model is a decision tree, a black-box model, or a regression-based model. These
are the model agnostic methods.

On the other hand, model-specific methods rely on the internal structure
of the model. For example, Grad-CAM can only be used with differentiable
models, making it model-specific.

3.2.4 Saliency-Based Approaches

Saliency-based approaches aim to determine which parts of the input are most
important for the model’s decision. There are several methods using this idea.

One of the most popular method is using Shap values [1] It uses Shap-
ley values from game theory to evaluate the contribution of each feature. An
important advantage is that SHAP is model-agnostic, because it uses the clas-
sification function only as a black-box. However, calculating the exact SHAP
values is computationally expensive since it would require evaluating all subsets
of features—therefore, approximations are usually applied.

There are attention-based ante-hoc methods, if the attention mechanism
appears somewhere in the model. he lengths or magnitudes of the attention
vectors can be interpreted as importance weights for the input elements. These
methods are model-specific because they only work if the attention mechanism
is present in the model.

The gradiens based methods, like textbfGrad-CAM [3], or Saliency cal-
culate the gradient with respect to the input to measure the importance of the
features and points. A big drawback in these methods is that to be applicable,
the model needs to be differentiable.

Since saliency-based methods identify important input regions, they often
require domain knowledge for meaningful interpretation and may remain chal-
lenging to understand for an average user.
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3.2.5 Subsequence-Based Approaches

An alternative direction for interpretability focuses on identifying important
subsequences.

Maletzke et. al. [2] look for so-called motifs, these are fixed-length sub-
sequences which appear frequently in the dataset. They use these motifs for
classification, with the help of a decision tree. Thus, this is a globally inter-
pretable, ante-hoc technique.

Their advantage lies in the fact that classification decisions can be explained
by the presence of coherent subsequences. However, they do not achieve state-of-
the-art performance, meaning that interpretability comes at the cost of reduced
predictive accuracy.

Similar in manner to motifs, shapelets were introduced [5]. For shapelets,
we do not require them to be subsequences for an instance. Typically in
shapelet-based methods, the goal is to find k shapelet, which discriminates the
classes well.

After finding the best k shapelet, they use a distance function to transform
each instance to a new view. For each shapelet an instance’s distance from
the shapelet is measured, and these distances are the new representation of the
data.

The classification is then executed using the transformed data.
For both motif- and shapelet-based methods, selecting the optimal subse-

quence length is a major challenge, as it significantly impacts classification per-
formance.

3.2.6 Decomposition of Event Sequences

In this thesis, I distinguish a specific class of time series called event sequences.
In such cases, we assume that the observed sequence consists of interleaved
states from multiple underlying generative processes.

A possible interpretation of an event sequence is to identify which subse-
quences originate from the same generative process. The advantage of this
approach is that the resulting subsequences may become interpretable individ-
ually.

However, its drawback is that not all time series can be reasonably assumed
to consist of multiple interleaved processes—thus, this approach loses generality.

Event sequences and their interpretability are further elaborated on in 4.

4 Decomposition of Event Sequences

4.1 General Concepts
The decomposition of event sequences is a fascinating topic because, if we can
successfully divide the sequence into smaller subsequences, each may become
interpretable on its own. An interesting example of this is the tracking of a
patient’s medical history.
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Imagine that a patient regularly visits their general practitioner for blood
pressure issues, and in the meantime, they contract the flu. Therefore, visits
and prescriptions related to both conditions are recorded consecutively in their
medical history, despite being unrelated

If the doctor later wants to analyze the progression of the patient’s blood
pressure condition, they would isolate only the relevant entries. In other words,
they would extract a relevant subsequence from the full medical history, which
then enables interpretation.

Similarly, when a historian analyzes the Roman Empire, they pick relevant
records from historical sources to explain the decisions of the ruling emperor.
In both cases, interpretability is achieved by focusing on a relevant subsequence
of a broader event sequence.

This gives us the idea that by segmenting an event sequence into meaningful
subsequences, the overall sequence can become more interpretable.

4.2 Mathematical Model
To discuss the decomposition of event sequences, we need a mathematical model
that describes how the elements of the sequence are generated.

The choice of the generative model influences how we approach the problem
of desomposition.

While more complex models may describe the sequences more accurately,
they may also complicate the decomposition process.

I aim to use a model in which the decomposition itself serves as the inter-
pretability tool. With this goal in mind, I explore the mathematical toolbox for
appropriate modeling approaches.

4.3 A Specific Case: Markov Mixtures
We want to introduce randomness into the generation since we aim to capture
non-deterministic processes. A simple yet well-understood class of probabilistic
models are Markov chains and their variants. These allow us to model random
but structured processes.

To model that our event sequence is the interleaving of multiple evolving pro-
cesses, we need multiple Markov-chains, which will generate the event sequence,
based on some distribution. Let’s denote them by M1, . . . ,Mk.

Before exploring different approaches in the literature, let us first define the
generative procedure:

There is a main controller which selects the next Markov-chain Mi, which
will make a "step" (performs a transition). The label of the new state will be
the next character in the event sequence.

One can distinguish two versions of the model based on how the Markov
chain is selected:.

• In the simpler probabilistic version, each Mi is selected with probability
pi, where

∑
pi = 1.
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• In the more sophisticated, chain-dependent model, the next n is selected
based on the currently active chain, using transition probabilities pij .

Another modeling decision concerns the relationship between the state spaces
of the Markov chains. These can be:

• pairwise disjoint

• Overlapping (sharing some states between chains).

In most of our experiments, we use disjoint state spaces and the simpler
probabilistic controller model. However, for future research and deeper under-
standing, it’s worth considering the more general models as well.

4.4 Methods for Decomposing Markovian Event Sequences
Once we choose our generative model, our goal is to provide interpretability by
identifying those subsequences that originated from the same Markov chain.

This task includes determining both the states of each Markov-chain, as well
as the probabilities of choosing each Markov-chain in the mixture model.

In the probabilistic model this means the values of each pi, and for chain-
dependent this means each pij

It is noteworthy, that in the case of disjoint state spaces, the task reduces
to partitioning the space of all possible states, because once we have the state
space for a Markov-chain, we can approximate the transition probabilies of the
chain, based on the subsequence of the relevant states.

5 Summary
In my thesis work, I examined the questions of interpretability in the case of
time series modeling. I presented the potential approaches and a possible way
of their classification. I elucidated the questions surrounding the interpretation
of event-like time series data. I demonstrated the classical methods known in
literature.
Further research could focus on creating my own method, focusing on event
sequence decomposition.
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