Picard-Kačanov-type iterations for nonlinear elliptic PDEs

Sike András

Project Work Presentation

Eötvös Loránd Tudományegyetem

June 5, 2025

Stating the problem

Last semester, we have made looked at the equation

$$egin{cases} -{\sf div}(a(u)
abla u)=f; \quad u:\Omega
ightarrow \mathbb{R};\ uig|_{\partial\Omega}=0. \end{cases}$$

This semester, we have generalized it as follows:

$$\begin{cases} -\operatorname{div}(A(x, u) \cdot \nabla u) + q(x, u)u = f; & u: \Omega \to \mathbb{R}; \\ u|_{\partial\Omega} = 0; & u \in \Gamma_D; \\ (A(x, u)\nabla u \cdot \nu + \rho u)|_{\partial\Omega} = g; & u \in \Gamma_N, \end{cases}$$

which can be used to model a fuel transformer (cf. [2]).

For the FEM, we need the weak formulation

$$\int_{\Omega} A(x, u) \cdot \nabla u \cdot \nabla v + \int_{\Omega} q(x, u) uv = \int_{\Omega} fv + \int_{\partial \Omega} pv \qquad \forall \ v \in H^1_D(\Omega).$$

•

EÖTVÖS LORÁND University | Budapest

Conditions for unique solvability

The afromentioned weak problem has a unique $u \in H^1_D(\Omega)$ solution if

- (i) $\Omega \subset \mathbb{R}^2$ is a bounded domain such that $\partial \Omega$ is piecewise smooth;
- (ii) $A: \Omega \times \mathbb{R} \to \mathbb{R}^{2 \times 2}$ measurable, bounded, uniformly positive;
- (iii) $q: \Omega \times \mathbb{R} \to \mathbb{R}, p: \partial \Omega \to \mathbb{R}$ are nonnegative essentially bounded, Lipschitz continuous in the second variable;
- (iv) $f \in L^2(\Omega)$, $g \in L^2(\partial \Omega)$;
- (v) $\partial \Omega = \Gamma_D \ \dot{\cup} \ \Gamma_N$.

Linearization

Instead of the nonlinear weak problem, we set some $u_0 \in H^1_D(\Omega)$, and obtain u_{n+1} by solving

$$\int_{\Omega} A(x, u_n) \cdot \nabla u_{n+1} \cdot \nabla v + \int_{\Omega} q(x, u_n) u_{n+1} v = \int_{\Omega} fv + \int_{\partial \Omega} pv \qquad \forall \ v \in H^1_D(\Omega).$$

Compared to our old method, we need to account for the following:

- (i) Construct the stiffness matrix such that we have matrix-valued diffusion functions;
- (ii) Include a mass matrix term corresponding to q;
- (iii) Impose the proper boundary conditions;
- (iv) More complicated domains.

Stiffness and mass matrices

- Stiffness matrix
 - Using reference elements, we can calculate the elementwise constant gradients;
 - We can also compute A(x, u) values at any base point;
 - \circ The product $A\cdot \nabla \varphi_j\cdot \nabla \varphi_i$ can be used for numerical integration schemes.
- Mass matrix
 - $\circ\;$ For the reaction term, we need to add integrals of the form

$$\int_{\Omega} q\varphi_j \varphi_i$$

- $\circ~$ These can be second order polynomials;
- Keeping the old weights and shifting the base points we can obtain a quadrature of second order.

Domain, boundary conditions

- Boundary Conditions:
 - Detect boundary edges;
 - Compute the integrals

$$\int_{\partial\Omega} p\varphi_i$$

- $\circ~$ Add the values to the load vector.
- Domain:
 - We already had square domains;
 - · Stretching one parameter we can obtain rectangle domains;
 - Creating unions of these cover all cases in [2].

Numerical experiments, max norm

Numerical experiments, Sobolev norm

Impacts investigated

- Nonlinearity in the first variable of $A \delta$;
- Nonlinearity in the second variable of $A \mu$;
- Nonlinearity in only one diffusion term $-\lambda$;
- Nonlinearity in the first variable of $q \tau$;
- Nonlinearity in the second variable of $q \varepsilon$.

Convergence coefficients

EÖTVÖS LORÁND Figure: Impact of different kinds of nonlinearities

- Faragó, I., & Karátson, J. (2002). Numerical solution of nonlinear elliptic problems via preconditioning operators: Theory and applications (Vol. 11). Nova Publishers.
- [2] Hlavácek, I., Krizek, M., & Maly, J. (1994). On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. *Journal of Mathematical Analysis and Applications*, 184(1), 168-189.

