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I. INTRODUCTION

In this report, we elaborate on the previous semerter’s work
by discussing the asymptotic behaviour of ranking functions,
and running some simulations for paramer estimation. For the
definitions of Reproducing Kernel Hilbert Spaces and Maxi-
mum Mean Discrepancy (MMD), see the previous semester’s
work or [1].

II. THE RESAMPLING FRAMEWORK

We start by giving a brief introduction on the resampling
framework. Let P = {Pθ ∈ Θ} be a class of probability
distributions over X standard Borel space parameterized by Θ
polish space. We assume that there is a distribution Pθ∗ ∈ P ,
from which we receive a sample S(0) ∈ X . (S(0) can be
thought of as a vector of n i.i.d. variables if we have n i.i.d.
samples from Pθ∗ . However, for most of our purposes, the i.i.d.
assumption doesn’t need to hold. for example, S(0) could be
a time series as well.)

We also assume, that we have access to a black box G,
that can generate a fix sample S given parameter θ ∈ Θ and
seed ξ ∈ Q where Q is a standard Borel space, and S has
distribution Pθ if the seed is drawn from distribution Q over
Q. Without loss of generality, it can be assumed that Q = [0, 1]
and Q is the uniform distribution over Q [2].
Remark. Examples for black box G can be the inverses of
the cumulative distribution functions, or neural networks that
given random noise can generate meaningful samples. (For
example diffusion models for image generation.)

Note that i-th sample can be thought of as a a function of
θ if we fix ξ a priori.

The goal is to construct hypothesis tests for H0 : Pθ = Pθ∗
and H1 : Pθ ̸= Pθ∗ . with exact probability on the type I.
error. The main idea of the framework is to generate m − 1
i.i.d. alternative samples, each from Pθ in order to perform the
hypothesis test. We denote the original sample with S(0), and
the i-th alternative sample with S(i)

θ . These samples are then
compared using a ranking function:

Definition II.1. [3] Let A be a measurable space, denote
{1, ...,m} with [m]. Then ψ : Am→ [m] is a ranking function
if it satisfies the following properties:
P1) Invariance with regards to the reordering of the last m−1
elements, i.e. for all (a1, ..., am) ∈ Am:

ψ(a1, a2, ..., am) = ψ(a1, aπ(2), ..., aπ(m)) (II.1)

where π is a permutation on the set {2, ...,m}.
P2) Uniqueness in the first variable, i.e. for all i, j ∈ [m] if
ai ̸= aj , then

ψ(ai, {ak}k ̸=i) ̸= ψ(aj , {ak}k ̸=j) (II.2)

where the shorthand notation is justified by P1.

Using the concept of ranking functions, we can construct
confidence regions for the parameter θ∗:

Theorem II.2. [4] Given a ranking function ψ, a parameter
set Θ, and integer hyperparameters (q,m) with 1 ≤ q ≤ m,
under the null hypothesis H0 : Pθ = Pθ∗ a confidence region
for θ∗ can be constructed as:

Θ̃ψ(q,m) := {θ ∈ Θ | 1 ≤ ψ(S(0), {S(k)
θ }k ̸=0) ≤ q}

where we have
P(θ∗ ∈ Θψ(q,m)) =

q

m
(II.3)

Ranking functions can be defined using a reference variable
of the original sample:

Z
(0)
θ := T (S(0), θ) (II.4)

where T : Xn×Θ→R. We can also apply the same function
the the alternative samples to obtain {Z(i)

θ }i̸=0 This notion of
a reference variables might seem a bit arbitrary at first, so let’s
have a look at an example:

Example. The maximum likelihood based reference variables:
If L(θ, S(i)) denotes the log-likelihood of sample S(i), then

Z
(i)
θ = ||∇θL(θ, S(i))||2 (II.5)

We generalise the concept of reference variables a bit
further, introducing a seed component ξ as well, which will
be used to create MMD based reference variables. This ξ can
be anything from a Borel-measurable space, sampled from
an arbitrary distribution, but we will suppose without loss of
generality that it is from the [0, 1] interval, and is obtained
from a uniform distribution.

Z
(i)
θ,ξ := T (S

(i)
θ , θ, ξi) (II.6)

This generalisation will allow us to use MMD based refer-
ence variables defined as:

Z
(i)
θ = M̂MD

2

H[S
(i)
θ , S

(m+i)
θ ] (II.7)

Here, we compare all samples to another set of samples
S(m), S

(m+1)
θ , ..., S

(2m−1)
θ to obtain Z(0)

θ , ..., Z
(m−1)
θ , and the

seeds encode the random noise that is used the generate the
other sample.

Remark. We can think of {Z(i)
θ,ξ}i ̸=0 as i.i.d. alternative sam-

ples for the reference variable Z(0)
θ , which also has the same

distribution under H0. Therefore we will use the notation Z(i)
θ

for this type of reference variable as well, and write out ξ only
when we fix the seed.
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In order to obtain the rank of the original sample using its
reference variable, Z(0)

θ , ..., Z
(m−1)
θ are sorted in ascending

order, therefore the rank of S(i)
θ becomes its place in the

ordering, i.e.

ψ(S
(i)
θ , {S(j)

θ }j ̸=i) = 1 +
∑
j ̸=i

I{Z(j)
θ <Z

(i)
θ } (II.8)

Unfortunately, the reference variables can sometimes take
on the same values for some θ, so to ensure a strict ordering,
a pseudo-ordering can included in the ranking function:

Definition II.3. [3] Let π : [m] → [m] be a random
permutation, which we select random uniformly from the set
of all such permutations. Then we say that Z(i)

θ <π Z
(j)
θ if

Z
(i)
θ < Z

(j)
θ or Z(i)

θ = Z
(j)
θ and π(i) < π(j).

With this ordering, we can ensure that the reference variable
based ranking functions will indeed be ranking functions.

We denote the rank of the original sample with regards to
the m − 1 i.i.d samples generated from Pθ with R(m)

θ :=

ψ(S(0), {S(i)
θ }i∈[1,m−1]) Or, in terms of reference variables:

R(m)
θ = 1 +

m−1∑
i=1

I{Z(i)
θ <Z

(0)
θ } (II.9)

III. ASYMPTOTIC BEHAVIOR

An interesting question that can be asked is what happens if
we increase the number of subsamplings (m) or the number of
elements in each sample (n). From now on, R(m)

θ will denote
the relative rank of Z(0)

θ , which is the rank divided by m. This
will allow us to compare the values of R(m)

θ for different ms,
as R(m)

θ ∈ [0, 1] for every m.
First, we discuss the asymptotics in m→∞. For this, we

define the the relative rank of z ∈ R as

R(m)
θ (z) =

1

m

(
1 +

m−1∑
i=1

I{Z(i)
θ <z}

)
(III.1)

Remark. The Ranking function R(m)
θ (z) can be expressed in

the following form:

R(m)
θ (z) =

1

m

(
1 +

m−1∑
i=1

I{Z(i)
θ <z}

)
=

=
1

m
+
m− 1

m

1

m− 1

m−1∑
i=1

I{Z(i)
θ <z}

(III.2)

From which, because {Z(i)
θ }i ̸=0 are i.i.d., by the application

of the law of large numbers, we get

lim
m→∞

R(m)
θ (z) = lim

m→∞

1

m− 1

m−1∑
i=1

I{Z(i)
θ <z}

= P
(
Z

(1)
θ < z

)
= F

Z
(1)
θ

(z)

(III.3)

with probability one for a fix z ∈ R, where F
Z

(1)
θ

denotes the

cummulative distribution function of Z(1)
θ . We can also notice

that the relative rank R(m)
θ (z) corresponds to the empirical

CDF of {Z(i)
θ }i̸=0 at point z ∈ R, since they are i.i.d..

Corollary III.1. With the substitution z = Z
(0)
θ we have

lim
m→∞

R(m)
θ = F

Z
(1)
θ

(
Z

(0)
θ

)
(III.4)

with probability one.

This means that for any parameter θ, the rank of the original
sample will converge to the value that the CDF of Z(1)

θ assigns
to the reference variable of the original sample.

Corollary III.2. Under H0: Pθ = Pθ∗ , if Z(i)
θ are contin-

uous random variables, then lim
m→∞

R(m)
θ = F

Z
(0)
θ

(
Z

(0)
θ

)
is

uniformly distributed over [0, 1].

For a fix seed ξ, the rank of the reference variable given a
parameter θ will be a piecewise constant function (if the dis-
tribution is parameterized reasonably). On which it would be
difficult to optimize using gradient descent methods, therefore
we introduce the smoothed rank, which interpolates using the
ordered version of {Z(i)

θ }i ̸=0 at each point θ ∈ Θ. We prove
the continuity of the smoothed rank in the next section, now
we only show that it’s asymptotics behave similarly to that of
the relative rank.

Definition III.3. Let (Θ, d) be a metric space, and
Z(i) : Θ → R (i ∈ [m]) continuous functions. Z(i)

∗ is their
pointwise ordered version if:

Z
(i)
∗ (θ) = min

j∈[m]

{
Z(j)(θ) | #

{
k | Z(j)(θ) ≥ Z(k)(θ)

}
≥ i
}

(III.5)
i.e. Z(1)

∗ (θ) ≤ ... ≤ Z
(m)
∗ (θ). (# denotes the cardinality of

the set.)

Definition III.4. Let Y
(1)
θ ≤ ... ≤ Y

(m−1)
θ denote the

pointwise ordered version of {Z(i)
θ }i ̸=0. Then the smoothed

rank of z ∈ R is defined as:

R̃(m)
θ,ξ (z) =



1

m

(
z

Y
(1)
θ

)
if z < Y

(1)
θ

1

m

(
k +

z − Y
(k)
θ

Y
(k+1)
θ − Y

(k)
θ

)
if Y (k)

θ ≤ z < Y
(k+1)
θ

1

m

(
m+ τ

(
z, Y

(m−1)
θ

))
if Y (m−1)

θ ≤ z

(III.6)
where τ is a continuous function with τ(z, y) ≥ 0 and

τ(z, z) = 0 for every z and y in the ranges of Z(0)
θ and Z(1)

θ ,
assuming z ≥ y. Furthermore, we require τ to monotonically
increase in z and monotonically decrease in y in the same
area.

The selection of τ can be used to adjust the slope in this
region of the function during optimization, in order to find the
region where R(m)

θ < 1. Examples of the choice of τ can be
τ(z, y) = z

y − 1 or τ(z, y) = z2

y2 − 1

Similarly to R(m)
θ , we define R̃(m)

θ = R̃(m)
θ (Z

(0)
θ ).

Theorem III.5. Let R̃(m)
θ (z) denote the smoothed rank of

z ∈ R. Then

lim
m→∞

R̃(m)
θ (z) = P

(
Z

(1)
θ < z

)
= F

Z
(1)
θ

(z) (III.7)
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Fig. 1: The relative rank and smoothed rank (for a fix seed)
of a sample from an exponential distribution with parameter 2
using MMD based reference variables using the RBF kernel
with σ = 1. (n = 50, m = 10, τ(z, y) = z

y − 1)

Proof. Let Z(max)
θ denote the maximum of {Z(i)

θ }i ̸=0 and

c = P
(
Z

(1)
θ ≥ z

)
(III.8)

First, we assume c > 0. Notice that for every z ∈ R, if
z ≤ Z

(max)
θ , then by construction |R̃(m)

θ (z)−R(m)
θ (z)| ≤ 1

m .
This means that if z ≤ Z

(max)
θ for a large enough m, then

the limit of R̃(m)
θ (z) and R(m)

θ (z) will be the same. Since we
already know that R(m)

θ (z) converges pointwise a.s. to the cdf
(III.3), the probability of z ≤ Z

(max)
θ for a large enough m

will give a lower bound for the probability of the convergence
in (III.7):

P
(

lim
m→∞

R̃(m)
θ (z) = F

Z
(1)
θ

(z)
)

≥ P
(
z ≤ lim

m→∞
Z

(max)
θ

)
= 1− P

(
z > lim sup

i→∞
Z

(i)
θ

)
= 1−

∞∏
i=1

P
(
z > Z

(i)
θ

)
= 1−

∞∏
i=1

(1− c) = 1

since P
(
z > Z

(i)
θ

)
= 1− c < 1.

If c = 0, then it means that Z(max)
θ < z almost surely. From

the definition of the relative smoothed rank, we can see that

R̃(m)
θ (z) =

1

m

(
m+ τ

(
z, Z

(max)
θ

))
(III.9)

almost surely. Since we required τ to be monotonically de-
creasing in its second argument, f(z, Z(max)

θ ) ≤ τ(z, Z
(1)
θ ).

Fig. 2: The smoothed rank in θ∗ for 10 different fixed seeds
with increasing m.

This can be used to give an upper bound to the limit:

lim
m→∞

R̃(m)
θ (z) = lim

m→∞

1

m

(
m+ τ

(
z, Z

(max)
θ

))
= 1 + lim

m→∞

τ
(
z, Z

(max)
θ

)
m

≤ 1 + lim
m→∞

τ
(
z, Z

(1)
θ

)
m

= 1

(III.10)

Since we required τ(z, y) ≥ 0, R̃(m)
θ (z) ≥ 1 also holds,

therefore lim
m→∞

R̃(m)
θ (z) = 1, which is exactly the value that

F
Z

(1)
θ

(z) would take if Z(1)
θ < z almost surely.

Corollary III.6. With the substitution z = Z
(0)
θ we have

lim
m→∞

R̃(m)
θ = F

Z
(1)
θ

(
Z

(0)
θ

)
(III.11)

with probability one for any fixed seed ξ.

Remark. Under the null hypothesis Pθ = Pθ∗ , if Z(i)
θ are

continuous random variables, then lim
m→∞

R̃(m)
θ = F

Z
(0)
θ

(
Z

(0)
θ

)
is uniformly distributed over [0, 1].

Next, we investigate the asymptotic behavior for n→∞. For
this, we assume that the original sample S(0) = {x1, ...., xn}
contains i.i.d. instances from distribution Pθ.

Definition III.7. We say that a reference variable is consistent,
if it holds that

lim
n→∞

Z
(i)
θ =

{
0 if xj ∼ Pθ i.i.d.
c ∈ R+ ∪ {∞} else

(III.12)

almost surely for any θ ∈ Θ parameter.

Proposition III.8. (Pointwise consistency) If Z(i)
θ are consis-

tent, then for any fix θ ∈ Θ, the relative rank R(m)
θ constructed

from it has the following properties: I.) R̃(m)
θ → 1 a.s. as

n→∞ if Pθ∗ ̸= Pθ.
II.) R̃(m)

θ
d→ Um[0, 1] as n → ∞ if Pθ∗ = Pθ where

Um[0, 1] denotes the discrete uniform distribution over the set{
1
m , ...,

m−1
m , 1

}
.

Proof. I.) Since Pθ ̸= Pθ∗ , by the definition of consistency, we
have lim

n→∞
Z

(0)
θ = c > 0 = lim

n→∞
Z

(i)
θ for all i ̸= 0, therefore

lim
n→∞

R̃(m)
θ,ξ = 1 a.s..

II.) Since Pθ∗ = Pθ, Z(0)
θ and Z(i)

θ have the same distribu-
tion for all i ∈ [m], the place that the reference variable would
take in the ordering of {Z(i)

θ } is uniformly distributed.
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Next, we prove that the MMD based reference variables are
consistent if they are constructed using a characteristic kernel.
For this, we need the law of large numbers for kernel mean
embeddings:

Lemma III.9. (Law of large numbers for kernel mean em-
beddings) Let H be a real RKHS over X and (X ,A,P)
a probability space. Denote the empirical distribution of a
sample {xi}ni=1 with Qn(A) = 1

n

∑n
i=1 Ixi∈A for all A ∈ A.

Then it holds that ||µP − µQn
||2H→0 as n→∞.

Proof. First we decompose the norm into two parts, and then
show that each converges to 0 as n→0:

||µP − µQn
||2H = ⟨µP − µQn

, µP − µQn
⟩H

= ⟨µP, µP⟩ − 2 ⟨µP, µQn
⟩+ ⟨µQn

, µQn
⟩

= (⟨µQn
, µQn

⟩ − ⟨µP, µQn
⟩) (III.13)

+ (⟨µP, µP⟩ − ⟨µP, µQn
⟩) (III.14)

We can rewrite the scalar products in (III.13) and (III.14)
using the definition of the kernel mean embeddings and the
reproducing property of the RKHS:

⟨µQn
, µQn

⟩H =

〈
1

n

n∑
i=1

k(·, xi),
1

n

n∑
j=1

k(·, xj)

〉
H

=
1

n

n∑
i=1

1

n

n∑
j=1

kxi
(xj)

⟨µP, µQn⟩H =

〈
1

n

n∑
i=1

k(·, xi), µP

〉
H

= EX∼P

[
1

n

n∑
i=1

k(X,xi)

]

=
1

n

n∑
i=1

EX∼P[kxi
(X)]

⟨µP, µP⟩ = EY∼P [EX∼P [k(X,Y )]]

First, for (III.13)→0 we have:

1

n

n∑
i=1

1

n

n∑
j=1

kxi
(xj)−

1

n

n∑
i=1

EX∼P[kxi
(X)] =

=
1

n

n∑
i=1

 1

n

n∑
j=1

kxi
(xj)− EX∼P[kxi

(X)]


Next we use the fact that kxi

are P-measurable func-
tions with real values and EX∼P[kxi

(X)] = ⟨kxi
, µP⟩ ≤

||kxi ||H||µP||H < ∞, therefore the strong law of large
numbers can be applied for each i ∈ [n]: 1

n

n∑
j=1

kxi
(xj)− EX∼P[kxi

(X)]

→0

so their sum (III.13)→0 as well.
Next, (III.14)→0 is equivalent to〈

1

n

n∑
i=1

kxi , µP

〉
H

− ⟨µP, µP⟩H=

〈
1

n

n∑
i=1

kxi − µP, µP

〉
H

tending to 0 as n→0. For this it is more than enough to show
that

〈
1
n

∑n
i=1 kxi

− µP, h
〉
H → 0 ∀h ∈ H, i.e. it is the null

vector:〈
1

n

n∑
i=1

kxi
− µP, h

〉
H

=
1

n

n∑
i=1

⟨kxi
, h⟩ − ⟨µP, h⟩ =

=
1

n

n∑
i=1

h(xi)− EX∼P[h(X)]

here, once again, since EX∼P[h(X)] < ∞ for every element
h of the RKHS H, the law of large numbers hold, and this
difference tends to 0 as n→∞.

Definition III.10. A kernel function k is a characteristic
kernel, if the corresponding kernel mean embedding captures
all information about the underlying distributions:

||µP − µQ||2H = 0 ⇔ P = Q (III.15)

i.e. the MMD of two embedded distributions is 0 if and only
if they are the same distribution.

Corollary III.11. If an MMD-based reference variable is
constructed using a characteristic kernel, then it is consistent.

Proof. Let Xn = {x1, ..., xn} be the original sample, and
X ′
n = {x′1, ..., x′n} be the sample that is drawn using seed ξ

for the calculation of the reference variable. We denote their
empirical distributions as Qn and Q′

n respectively. From the
previous lemma, we have that ||µPθ∗ −µQn ||2H→0 and ||µPθ

−
µQ′

n
||2H→0 as n→∞. Therefore

M̂MD
2

H[Xn, X
′
n] = ||µQn

− µQ′
n
||2H

= ||µQn
− µPθ∗+ µPθ∗− µPθ

+ µPθ
− µQ′

n
||2H

≤ ||µQn
−µPθ∗ ||

2
H + ||µPθ∗− µPθ

||2H + ||µPθ
− µQ′

n
||2H

We can see that an upper bound for the limit is

lim
n→∞

M̂MD
2

H[Xn, X
′
n] ≤ MMD2

H[Pθ∗ ,Pθ] (III.16)

By changing the role of M̂MD
2

H and MMD2
H, we get a lower

bound as well:

MMD2
H[Pθ∗ ,Pθ] = ||µPθ∗ − µPθ

||2H
= ||µPθ∗− µQn

+ µQn
− µQ′

n
+ µQ′

n
− µPθ

||2H
≤ ||µPθ∗−µQn

||2H + ||µQn
− µQ′

n
||2H + ||µQ′

n
− µPθ

||2H
Once again, two of the three terms tend to 0 as n → ∞,
therefore

MMD2
H[Pθ∗ ,Pθ] ≤ lim

n→∞
M̂MD

2

H[Xn, X
′
n] (III.17)

From which we get that

lim
n→∞

M̂MD
2

H[Xn, X
′
n] = MMD2

H[Pθ∗ ,Pθ]

= 0 if and only if Pθ = Pθ∗
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(a) n = 50 (b) n = 100

(c) n = 200 (d) n = 500

Fig. 3: The smoothed rank at each parameter with and without
fixing the seed. The original sample of size n with i.i.d.
instances came from an exponential distribution with paramer
θ = 2. (m = 10, using RBF kernel MMD based reference
variables.)

IV. OPTIMIZATION

When looking for a minimizer θ̂ of the smoothed rank, we
need to fix the seed from which the alternative samples are
drawn from, in order to make R̃(m)

θ,ξ a smooth function without
any randomness. We use stochastic approximation methods,
such as the Kiefer–Wolfowitz algorithm for 1 dimensional
parameter spaces, and Simultaneous Perturbation Stochastic
Approximation (SPSA) [5] for higher dimensional spaces to
find the minimum of R̃(m)

θ,ξ in Θ. These algorithm are very
similar to the stochastic gradient descent, but the difference is
that they estimate the gradient locally by taking a step in each
direction, instead of calculating it exactly.

Definition IV.1. Kiefer-Wolfowitz Algorithm for finding a
minimum of function F : R→R:

θn+1 = θn + γn
F (θn − δn)− F (θn + δn)

2δn
(IV.1)

where the learning rates {γn} and δn satisfy
∑∞
n=0 γn = ∞,

lim
n→∞

δn = 0 and
∑∞
n=0

γ2
n

δ2n
<∞.

Definition IV.2. Simultaneous Perturbation Stochastic Ap-
proximation (SPSA): for finding a minimum of F : Rd→R:

θn+1,k = θn,k + γn
F (θn − δn∆n)− F (θn + δn∆n)

2δn∆n,k
(IV.2)

where θn,k denotes the kth coordinate of θn, and {∆n}
are independent, symmetric, zero-mean vectors, for example
Bernoulli trials with ∆n,k = ±1 with probability 1

2 each.

V. CONCLUSION AND FUTURE WORK

In this semester I examined the asymptotic behaviour of
reference variables, and have given criteria for their pointwise
convergence. I have also made some simulations for low

Fig. 4: Kiefer-Wolfowitz based optimization for a sample from
N (−4, 3), n = 50,m = 20, τ(z, y) = z

y −1 using RBF kernel
based MMD reference variables.

dimensional parameter spaces and simple distributions. Further
experiments on more compex distributions could be made,
for which improvements on the currently used optimization
algorithms will be required.
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