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The framework

Given:
▶ A family of probability distributions {Pϑ|ϑ ∈ Θ} on the same

standard Borel space X (Θ Polish space).
▶ S(0) = (x1, ..., xn) sample from Pϑ∗ (x1, ..., xn are not

necessarily i.i.d.)
▶ Black box G that can generate new, i.i.d. samples

S(1)
ϑ , ..., S(m)

ϑ given parameter ϑ.

Black box properties:
▶ We assume that the seed can be fixed.
▶ Example for fixed seed: uniform distribution and inverse CDF.

Goal:
Approximate ϑ∗



The framework

The Resampling framework
▶ 1. Generate m − 1 alternative samples S(1), ..., S(m−1) from

Pϑ.
▶ 2. Assign a real number to each sample based on ϑ and its

values called reference variable: Z (i)
ϑ := T (S(i)

ϑ , ϑ)
(i = 0, ..., m − 1).

▶ 3. Rank the samples based on the reference variables.
▶ 4. Denote the rank of the original sample. with

R
(m)
ϑ ∈ {1, ..., m}

Theorem
P(ϑ∗ ∈ {ϑ ∈ Θ|R(m)

ϑ ≤ q}) = q
m if there is a strict ordering a.s.

Remark
{Zi}i ̸=0 are i.i.d. random variables



Reference Variable

Examples of Reference Variables
▶ ML based reference variable: Z (i)

ϑ = ||∇ϑL(ϑ, S(i)
ϑ )||2

▶ MMD based reference variable: Z (i)
ϑ = M̂MD

2
[S(i)

ϑ , S(i+m)
ϑ ]

where {S(i+m)
ϑ } denotes an extra sample for each of the m samples

and M̂MD
2

is an unbiased estimator for the Maximum Mean
Discrepancy of the two probability distributions.

Remark
The MMD is a customisable similarity measure of probability
distributions. Note that MMD based reference variable doesn’t
require any knowledge about the distributions besides the samples.



Parameter Estimation

Idea:
ϑ̂ ∈ argmin

ϑ∈Θ
R

(m)
ϑ

Problem:
Hard to optimize



Smoothed rank

R̃
(m)
ϑ,ξ (z)=



1
m

(
z

Y (1)
ϑ

)
if z < Y (1)

ϑ

1
m

(
k + z − Y (k)

ϑ

Y (k+1)
ϑ − Y (k)

ϑ

)
if Y (k)

ϑ ≤ z <Y (k+1)
ϑ

1
m
(
m−1+τ

(
z , Y (m−1)

ϑ

))
if Y (m−1)

ϑ ≤ z

Where {Y (i)
ϑ } denotes the ordered version of {Z (i)

ϑ } and τ is a
continuous function with τ(z , y) ≥ 0 and τ(z , z) = 0 assuming
z ≥ y , monotonically increasing in z and decreased in y .



Asymptotic behaviour: m→∞

Proposition
lim

m→∞
R

(m)
ϑ = FZϑ

(Z (0)
ϑ ) where FZϑ

denotes the CDF of Z (i)
ϑ for

every i ̸= 0

Proposition
lim

m→∞
R̃

(m)
ϑ = FZϑ

(Z (0)
ϑ )
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R̃
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Asymptotic behaviour: n→∞
Assumption: S(0) = (x1, ..., xn) contains i.i.d. instances from Pϑ.
Definition
We say that a reference variable is consistent, if it holds that

lim
n→∞

Z (i)
ϑ =

{
0 if xj ∼ Pϑ i.i.d.
c ∈ R+ ∪ {∞} else

(1)

almost surely for any ϑ ∈ Θ parameter and i = 0, ..., m.

Proposition
If Z (i)

ϑ are consistent, then the relative rank R
(m)
ϑ constructed from

it has the following properties:
▶ I.) R̃

(m)
ϑ →1 a.s. as n→∞ if Pϑ∗ ̸= Pϑ.

▶ II.) R̃
(m)
ϑ

d→ Um[0, 1] as n→∞ if Pϑ∗ = Pϑ where Um[0, 1]
denotes the discrete uniform distribution over the set{

1
m , ..., m−1

m , 1
}

.



Optimization

Definition
Simultaneous Perturbation Stochastic Approximation (SPSA): for
finding a minimum of F : Rd →R:

ϑn+1,k = ϑn,k + γn
F (ϑn − δn∆n) − F (ϑn + δn∆n)

2δn∆n,k
(2)

where ϑn,k denotes the kth coordinate of ϑn, {γn} and δn are
learning rate hyperparameters, and {∆n} are independent,
symmetric, zero-mean vectors, for example Bernoulli trials with
∆n,k = ±1 with probability 1

2 each.



Optimization

Different optimizers for a sample from a normal distribution


