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1 Introduction

The Prize-Collecting Steiner Forest Problem is about finding a forest F in a weighted
undirected graph with a given penalty function over all unordered node pairs, which
minimizes the total of its edge costs and penalties for pairs not connected in F . We will
give a proper definition later.

This semester I continued my project with the Prize-Collecting Steiner Forest Prob-
lem often referred as PCSF. My main goal was to get familiar with a 2-approximation
algorithm described in [1] which calls a 3-approximation algorithm as a subroutine also de-
scribed in the book. During this semester I have finished implementing the 2-approximation
algorithm along with a heuristic algorithm, so I could start testing them. The results will
be described in the last section.

2 Description of PCSF

Definition: 1 Given an undirected G = (V,E) with non-negative edge costs c : E 7→ R+
0

and a non-negative penalty function π : V × V 7→ R+
0 which is 0 over node pairs (i, j),

where i ≥ j. The goal is to find a forest, which minimizes the following expression:∑
e∈F

ce +
∑

(i,j)∈Q

πij

where Q contains all disconnected node pairs in F .

The PCSF is a general version of the PCST problem (Prize-Collecting Steiner Tree),
where we search for a tree and pay penalties for the nodes not included in the solution.
A simple generalization is the following: We try every node as a root, which means we
include them in the solution anyway. Now, the penalties paid for unreachable nodes are
the same as the penalty paid for the disconnected node pairs containing the root.
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3 Algorithms for PCSF

3.1 3-approximation algorithm

The algorithm which I have worked the most is a 3-approximation algorithm described
in [1] from which we can easily obtain a 2-approximation algorithm by iterating it. The
algorithm is based on a coloring procedure. During the algorithm we maintain active sets,
initially every node. The main idea is that these sets color their outgoing edges for some
time until one edge becomes fully colored, which means that the coloring duration of the
edge reaches its edge cost. This is called the static coloring procedure, and its duration
in an iteration is denoted by deltaE.

To deal with the penalties we use an other coloring procedure called dynamic coloring.
Now we color the node pairs until one of them reaches its penalty. This one is a bit
difficult to visualize, so I explain it briefly. The main idea is that we build a digraph
called SetPairGraph where we have nodes for all sets that we colored with before and for
all node pairs. We add a source node and a sink node as well. There will be edges from
source to the set nodes with capacity yS where yS is the coloring duration of S on its
outgoing edges. There will be edges from every S set node to the (i, j) pair nodes based
on whether S cuts the (i, j) pair (contains only i or j) with infinite capacity. Finally,
we have an edge from every (i, j) pair node to the sink with πij capacity. We want to
represent a static coloring procedure but this time the bounds are the penalties. Coloring
with a set now is like increasing the capacity of the active sets and running a max-flow
algorithm. If the set edges (from source to set nodes) are full then we call this procedure
valid static coloring. We need to find a coloring like this by uniformly increasing the
capacity on the active set edges. This duration is denoted by deltaP.

Given deltaE and deltaP we take a minimum. Let it be delta. We color the edges for
delta time. It is important to note if an edge connects two active sets it will be colored
twice as fast than the others. If an edge is fully-colored we add it to the forest. In the
background the pairs are also being colored during the process. To visualize it we just
need to run a max-flow algorithm in our SetPairGraph with the new capacities on the
edges from source to set nodes and the flow value on the pair edges (from pair to sink)
will be the coloring duration of the pairs. If an edge like this is full, then we call it tight.
If we have a set, which cuts only tight pairs we call it tight. This means we are willing to
pay the penalties cut by the set. After a coloring iteration we remove all tight sets from
the active sets.

The algorithm terminates when there are no active sets left. In the end we have a
nice procedure for reducing the tight pairs, for which we would pay penalties. After the
non-tight pairs will be connected in our forest and we can delete those edges which do
not contribute to connect a non-tight pair.

About the running time we can say that is polynomial, since all subroutines we use
during the algorithm are polynomial, and there can be a linear number of active set, but
it mostly depends on the number of edges. If the graph is sparse the components are
build much slower due to low-connectivity but if it is dense it happens much faster. I will
write about this during the testing chapter.

3.2 2-approximation algorithm

This algorithm uses the previous approach by running it two times. First, runs it normally
and in the second run it sets the penalties 0 for pairs for which we paid penalties in the
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first run. After it evaluates it with the given penalties and compares the two solutions.
The book proves that it gives us a 2-approximation solution.

3.3 A heuristic approach

I developed a heuristic algorithm, which sometimes works quite efficiently compared to the
2-approximation algorithm. The main idea is that we want to put the nodes in different
categories depending on we are willing to include them in our solution or they can be left
out. Two obvious observation can be made. If we have a node and we sum all penalties
including this node and it is bigger than the cost of the maximum cost outgoing edge,
then we definitely include this node in our forest, since we do not want to penalties for it.
If the sum of the penalties is less than the cost of the minimal cost outgoing edge, then we
can leave it out because including any edge from this node will be a worse solution. We
separate the nodes by these parameters into necessary nodes and useless nodes. Obviously,
there are nodes that cannot be put any of these categories. We will call them the question
nodes.

Now, there are a lot of ways to deal with question nodes. I tried the following: if at
least half of the penalties including a question node are 0 then we put in the useless nodes
category, otherwise the necessary nodes category. This is a simple process, but if we do
not generate penalties for every node pair it is quite efficient.

Finally, we search for a minimum spanning tree/forest (usually the graph is connected)
including the necessary nodes. That tree/forest will be our solution.

I have not tried any other possibilities, but for instance a possible way can be if we
look at some ratio of the penalties and edge costs for a node. We can think of a rule for
separating the question nodes like this. A wrong approach is when we want to separate
them by looking at which edge cost is closer to the sum of penalties. This usually relies
on the node number.

4 Implementing and testing

4.1 Implementation

This semester I finally implemented the approximation algorithms in Python using the
networkx package for graphs. There were some changes, that I made in my code compared
to the book. For the coloring durations the book uses an y vector, where yS means how
much time we colored with the S set. If we want to test the algorithm it is not really
efficient if we have an array with exponential size, so I had a list for the coloring durations
and when one of the sets colors, I put the set in y with its cutting edges and the coloring
duration. From the book we can see this y will be a polynomial sized list. Another
advantage is that we can determine which set colored a specific edge and for how long.

The algorithm has several subroutines, some of them was easy to implement but for
example finding deltaP was quite difficult due to constructing a specific graph and running
a max-flow algorithm on it.

I used built-in algorithms in some of the subroutines. For example, to find a max-flow
I used a networkx function. At the end of the algorithm I used built-in functions to find
shortest paths and check if two nodes are connected. This is needed when we want to
decide which edges can be deleted to obtain the final forest.
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4.2 Testing

The main issue was to find the right parameters for testing. I will go through each one of
them one by one.

First, I always used 100 nodes for testing and I chose the parameters accordingly the
number of nodes. I used the Erdős-Rényi model to generate graphs. I chose p = 1/10 for
the edge probability, so we do not get very dense graphs. In these cases, the algorithm
usually does not pay penalties.

Edge costs were integers generated uniformly from [1,10]. The reason behind this the
huge running time. For a much wider interval, the components are built much slower, so
running the algorithm can take an hour, for instance, if we generate from [1,100].

The penalties were generated by the following procedure: we randomly decide for each
node pair, if we want penalties on them. We get two parameters from this procedure:
penalty generation probability and the penalty cost. I gave penalty 20% of the nodes
and the penalty was 1. The penalties cannot be much bigger because the edge costs are
between 1 and 10 and we do not pay penalties in most of these cases. The probability
parameter is important because we get nodes that can be easily left out from the solution,
but we get also nodes that should be included. It helps the heuristic algorithm as well.

5 Results

I tested the algorithm with the parameters mentioned above. The results will be shown on
the last page. We can see that the second iteration helps a lot in most cases. Sometimes
the edge cost is the same, but the 2-approximation algorithm does not pay penalties. The
heuristic approach sometimes better than the approximation algorithm but if it worse,
then it much worse. The approximation algrotithms run slow, approximately 8-9 minutes.
The heuristic approach is obviously really fast. The m parameter is the number of edges.

6 Future plans

Firstly, I will search for possibilities to improve the running time. Secondly, I will try
to think of any other heuristic approaches (maybe using the idea I mentioned before), so
I can compare them with my implemented algorithm. Finally, I will search for possible
applications of PCSF.
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7 Appendix

# m Heuristic 3-Approx 2-Approx
Cost Penalty Time (s) Cost Penalty Time (s) Cost Penalty Time (s)

1 481 175 0 0.14 183 49 444.16 168 7 552.44
2 500 154 0 0.07 163 47 393.37 163 0 397.29
3 494 168 0 0.09 169 43 461.58 124 21 426.65
4 481 166 0 0.09 181 54 472.60 118 23 421.72
5 464 180 0 0.09 198 59 591.07 190 6 477.45
6 456 164 0 0.07 175 57 399.08 118 19 352.72
7 498 137 0 0.08 157 48 320.73 114 16 274.05
8 475 166 0 0.08 173 52 390.46 173 0 371.17
9 496 174 0 0.07 184 56 396.20 103 31 314.22
10 497 154 0 0.06 168 47 348.00 164 1 336.47
11 505 177 0 0.06 197 64 432.69 189 3 480.04
12 514 178 0 0.09 189 57 716.42 183 6 613.20
13 489 151 0 0.12 168 41 547.06 168 0 554.86
14 510 144 0 0.10 157 48 506.97 154 2 543.36
15 517 172 0 0.11 178 64 551.24 170 11 619.86

Table 1: Summary of PCSF results on 15 randomly generated graphs with 100 nodes and
edge probability 0.1. Penalty probability: 1/5, Penalty range: {0, 1}
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