The Prize-Collecting Steiner Forest Problem

Kiss Bendegúz Supervisor: Király Tamás

June 2025

Kiss Bendegúz Supervisor: Király Tamás The Prize-Collecting Steiner Forest Problem

• Work during the semester:

- Implement and test the 2-approximation algorithm I studied
- Compare the results with a heuristic method that I developed
- **PCSF**: find a forest in a graph minimizing edge costs and penalties for disconnected node pairs.
- Generalizes the Prize-Collecting Steiner Tree Problem (PCST).

Given:

- Undirected graph G = (V, E) with edge costs $c : E \to \mathbb{R}^+$
- Penalty function $\pi: V \times V \rightarrow \mathbb{R}^+$
- $\pi_{ij} = 0$, if $i \ge j$

Goal: Find a forest *F* minimizing:

$$\sum_{e \in F} c_e + \sum_{(i,j) \in Q} \pi_{ij}$$

where Q is the set of disconnected node pairs in F.

- Starting with each node as an active set
- **2** These active sets start "coloring" their outgoing edges.
- When an edge gets fully colored (the coloring duration equals to its cost), we add it to the forest.
- We also "color" node pairs: if the color reaches their penalty, they become tight.
- Sets that only cut tight pairs are removed from the active sets.
- **o** Repeat until no active sets remain.
- Finally, we keep only the edges needed to connect the non-tight pairs.

- Run the 3-approximation algorithm on the original graph
- Ø Mark pairs we paid penalties for
- **③** We run the algorithm again with $\pi_{ij} = 0$ for those pairs
- Sevaluate the output by the original penalties
- O Return the better of the two solutions

- Categorize *v* nodes as:
 - Necessary: sum of penalties including v ≥ maximal outgoing edge cost
 - Useless: sum of penalties including $v \leq$ minimal outgoing edge cost
- Other nodes:
 - If at least half of the penalties containing v are 0 v becomes useless
 - Otherwise it becomes necessary
- Build MST over necessary nodes

- Language: Python
- Efficient data structure for coloring durations
- Used built-in functions from networkx library for:
 - Max-flow computation
 - Shortest paths
 - Deciding the connectivity of two nodes

- Erdős-Rényi graphs with 100 nodes, p = 0.1
- Edge costs: Uniform integers from [1,10]
- $\bullet\,$ Penalties on 20% of the node pairs, penalty value =1
- Compared algorithms: heuristic, 3-approx, 2-approx

#	m	Heuristic			3-Approx			2-Approx		
		Cost	Penalty	Time (s)	Cost	Penalty	Time (s)	Cost	Penalty	Time (s)
1	481	175	0	0.14	183	49	444.16	168	7	552.44
2	500	154	0	0.07	163	47	393.37	163	0	397.29
3	494	168	0	0.09	169	43	461.58	124	21	426.65
4	481	166	0	0.09	181	54	472.60	118	23	421.72
5	464	180	0	0.09	198	59	591.07	190	6	477.45
6	456	164	0	0.07	175	57	399.08	118	19	352.72
7	498	137	0	0.08	157	48	320.73	114	16	274.05
8	475	166	0	0.08	173	52	390.46	173	0	371.17
9	496	174	0	0.07	184	56	396.20	103	31	314.22
10	497	154	0	0.06	168	47	348.00	164	1	336.47
11	505	177	0	0.06	197	64	432.69	189	3	480.04
12	514	178	0	0.09	189	57	716.42	183	6	613.20
13	489	151	0	0.12	168	41	547.06	168	0	554.86
14	510	144	0	0.10	157	48	506.97	154	2	543.36
15	517	172	0	0.11	178	64	551.24	170	11	619.86

- Improve running time of my code
- Explore new heuristics (e.g. penalty/edge cost ratio)
- Investigate real-world applications of PCSF like protein interactions

 Ali Ahmadi, et al. 2-Approximation for Prize-Collecting Steiner Forest.
Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2024. Thank you for your attention!