
Optimization of foundry production processes 2

Anna Kelemen

Supervisor: Alpár Jüttner

2025 May

1. Introduction

Continuing the work from last semester, our goal remains to optimize the production process of a

foundry. Previously, we developed an integer programming (IP) model, that, when solved, produced

an optimal task schedule. However, solving that formulation turned out to be too slow.

In this project, instead of concentrating on the IP formulation and trying to achieve an integer

solution, we construct a different model and obtain integer results by deriving them from the

optimal solution of its linear programming (LP) relaxation. We solve the LP relaxation of the

problem using column generation, where the pricing problem is solved by a dynamic programming

algorithm. Then we obtain an integer solution and the corresponding task schedule by iteratively

rounding the (fractional) values of the optimal solution.

2. IP formulation

Given a list of the orders with each product including their weight, deadline and the duration of

each required task (mold making, core making and assembly), along with a list of shifts categorized

by their types - assembly shifts, covering all tasks other than casting and casting shifts - and their

start and end times, our goal is to assign a feasible schedule to each product minimizing the total

cost of all schedules. In the casting process, due to the high costs of metal melting, it is important

to minimize the number of casting rounds. Additionally, to reduce operational inventory and due

to space limitations, orders should be completed as close to their deadlines as possible without

exceeding them, and idle time between consecutive tasks done on the same workpiece should be

minimal.

Let P be the set of products and let A and C denote the sets of assembly and casting shifts.

For each product p ∈ P , spi
is considered a feasible schedule if all tasks related to p are assigned to

a shift with sufficient time/weight capacity, the tasks are completed in the correct order [2] - mold

and core making are done before assembly and the assembly is complete before casting - and are

finished before the product’s deadline. The cost cpi
of a schedule spi

∈ Sp is defined as the sum of

the idle time between consecutive tasks and the time between the completion of the order and the

deadline.

1



We can formulate it as an IP the following way.

min
∑
p∈P

∑
spi∈Sp

cpixspi
+

∑
c∈C

kcyc (1)

xspi
∈ {0, 1} ∀p ∈ P ∀spi

∈ Sp (2)

yc ∈ {0, 1} ∀c ∈ C (3)∑
spi∈Sp

xspi
= 1 ∀p ∈ P (4)

∑
p∈P

∑
spi∈Sp

a∈spi

tpxspi
≤ Ta ∀a ∈ A (5)

∑
p∈P

∑
spi∈Sp

c∈spi

wpxspi
−Wcyc ≤ 0 ∀c ∈ C (6)

The variables in (2) indicate whether a certain assignment is selected for a product, and the

variables in (3) represent whether casting takes place during a given casting shift. (4) ensures that

exactly one assignment is selected for each product. With wp denoting the weight of product p

and tp the time required for its assigned task within the given shift, (5) enforces that the time

capacities of shifts are not exceeded. (6) ensures that yc = 1 exactly when there is casting during

casting shift c. The objective is to minimize the total cost, which consists of the sum of idle times

across all selected assignments and the cost of operating the active casting shifts.

To guarantee feasibility, we also add an extra ”assignment” option for each product - one which

assigns its tasks to auxiliary shifts with infinite weight/time capacity, representing the choice to

not complete this order. The LP relaxation including these slack assignments is the following.

min
∑
p∈P

∑
spi∈Sp

cpi
xspi

+
∑
c∈C

kcyc (7)

0 ≤ xspi
≤ 1 ∀p ∈ P, spi

∈ Sp (8)

0 ≤ yc ≤ 1 ∀c ∈ C (9)∑
spi∈Sp

xspi
= 1 ∀p ∈ P (10)

∑
p∈P

∑
spi∈Sp

a∈spi

tpxspi
≤ Ta ∀a ∈ A (11)

∑
p∈P

∑
spi∈Sp

c∈spi

wpxspi
−Wcyc ≤ 0 ∀c ∈ C (12)

3. Column generation

We solve this relaxed version of the problem using column generation [3]. Initially we select one

schedule for each product (which we always have because of the extra assignments) and add the

corresponding columns to the model. Alongside these we include all columns for the casting shifts

(y). We obtain an optimal solution for this restricted problem and check whether the dual conditions

are also satisfied. If they are, we conclude that the current solution is optimal. Otherwise we select

a column corresponding to a violated dual constraint and add it to the model.

We have dual variables for each constraint.

2



• For (10): αp ∈ R ∀p ∈ P

• for (11) βa ≥ 0 ∀a ∈ A

• for (12) γc ≥ 0 ∀c ∈ C

The dual of the LP is the following.

min
∑
p∈P

αp +
∑
a∈A

βaTa (13)

cpi
+ αp +

∑
a∈spi

βatp +
∑
c∈spi

γcwp ≥ 0 ∀p ∈ P, spi
∈ Sp (14)

kc − γcWc ≥ 0 ∀c ∈ C (15)

Since the columns related to the casting shift variables are included in the model since the be-

ginning, (15) is always satisfied, so we need to find feasible assignments that violate inequality

(14). We do this using a dynamic programming algorithm. We search for the schedule with the

most negative reduced cost for each product, which means solving for each p ∈ P the optimization

problem

min
spi∈Sp

cpi
+ αp +

∑
a∈spi

βatp +
∑
c∈spi

γcwp

 . (16)

This is equivalent to finding a schedule with the lowest total cost, where the cost consists of

shift assignment costs - calculated by multiplying the corresponding dual variables with the task

duration for assembly shifts or with the product weight for casting shifts - along with the total idle

time.

3.1. Dynamic programming solution for the pricing problem

We can compute the cost of such an optimal schedule by combining the results of two separate

subproblems.

Algorithm 1 Minimal cost assignment DP - mold + core + assembly

1: for i← 1 to n do

2: m[i]← βai
· tpmold

if feasible, else ∞
3: c[i]← βai · tpcore if feasible, else ∞
4: a[i]← βai · tpassembly

if feasible, else ∞
5: end for

6: Initialize M [i], C[i], A[i]←∞ for all i

7: for i← 2 to n do

8: M [i]← min(m[i−1],M [i−1]− a[i−1]) + a[i] + idle(i−1, i)
9: C[i]← min(c[i−1], C[i−1]− a[i−1]) + a[i] + idle(i−1, i)

10: A[i]← min (A[i−1], c[i−1] +M [i−1], m[i−1] + C[i−1])− a[i−1] + a[i]

11: if mold and core fit together in ai−1 then

12: E ← m[i−1] + c[i−1] + a[i] + idlemold + idlecore

13: A[i]← min(N [i], E)

14: end if

15: A[i]← A[i] + idle(i−1, i)
16: end for

3



Algorithm 1 dynamically computes the optimal cost of assigning mold making, core making,

and assembly tasks with assembly placed in assembly shift i. For each shift i, we consider three

possibilities: combining the best core+assembly sequence ending in the previous shift with mold

making in i−1; combining the best mold+assembly sequence with core making in i−1; or reusing
the total cost from the previous step. In these three cases we don’t have to worry about shift

capacities, because either we checked previously in case we use the cost of the i−1th shift, or none

of the tasks are assigned to the same shift. Additionally, if both mold and core making can fit in

the same shift i−1, we consider placing them together and adding the assembly in shift i. The

minimum of these cases gives us the optimal cost for shift i.

Algorithm 2 Minimal cost assignment DP - casting

1: for each cast shift ck do

2: for each j such that aj .end ≤ ck.start do

3: OPT [k]← N [j] + idle(aj , ck) + idle(ck, p.deadline) + γck · wp + αp

4: end for

5: end for

After this, Algorithm 2 computes the best full assignment by combining the results with each

feasible casting shift. For each casting shift, we check all assembly shifts that finish before the

casting shift starts. We compute the total cost as the precomputed mold+core+assembly cost,

plus the sum of the new idle times and the casting cost. The minimum of these values is the total

cost of the minimal reduced-cost assignment. If n,m denotes the number of assembly and casting

shifts respectively, Algorithm 1 runs in O(n) and Algorithm 2 in O(nm) time.

In each iteration of column generation, we perform this computation for all orders. For those

orders where the minimum reduced cost is negative, we add the corresponding minimal-cost as-

signments as new columns to the model.

4. Rounding

After the initial column generation, we have a (fractional) optimum for the problem. We round

the solution to get integer results the following way.

In each round we select the K x variables with the largest (non-negative) value. For each one,

we temporarily fix it’s value to 1 and we fix all the other x variables present in the model for the

same product to 0. To ensure that the casting shift used in the selected assignment is active, we

also fix the corresponding y variable to 1. Then we solve the new LP obtained this way. At the

end of the round, we permanently fix the x and y for which the LP had the best objective value,

meaning which resulted in the least increase in objective value.

We repeat this process until every product has exactly one assignment fixed, and after every

rounding step, we perform another column generation phase to update the solution, reflecting the

potential changes after the newly fixed schedule and casting shift. Once a schedule is fixed for

a product, it takes up a specific amount of time and weight in the corresponding assembly and

casting shifts. To ensure that future schedules remain feasible — meaning every task fits within

the shift to which it is assigned — we continuously track the remaining capacities of all shifts

and during the column generation we only consider assignments that respect these updated limits.

Furthermore, after each rounding step, we delete all columns corresponding to assignments that

have become infeasible — that is, assignments for which the associated x variable can no longer

be fixed to 1 in any future iteration because at least one of their tasks would exceed the capacity

4



of its assigned shift.

5. Implementation and results

We implemented the algorithm using C++ programming language and the LEMON optimization

library [1]. The whole process including the initial column generation and the rounding procedure

runs in a few minutes for smaller datasets (∼ 50− 100 products and ∼100 shifts) and in about an

hour for larger instances (∼1000 products and ∼100 shifts - about a month’s worth of orders and

shifts).

LP relaxation Rounded solution
Idle time cost 119 247
Casting cost 7206300 8100000
Slack shift cost 0 0

Table 1: Example with 132 products

Figure 1: Change in objective value with the number of columns

Table 1 shows a breakdown of the different components of objective value for a run of the

algorithm, where each casting shift had cost 9 · 105 and the time values were scaled by a factor of

10−5. Figure 1 presents the change in the objective value with the number of columns throughout

both phases of the algorithm.

The most significant difference between the optimum of the LP relaxation and the final rounded

objective can be observed when the algorithm assigns slack assignments to some products, meaning

these orders are not completed. This is most likely because these products could be produced if

fractional time and weight allocation were allowed, but cannot be scheduled as complete assign-

ments. This is supported by our observations that when such slack assignments are present in the

final solution, the capacity of the assembly or casting shifts preceding these products deadline is

nearly full - ranging from 87% to 100 % in our experiments.

References

[1] LEMON - Library for Efficient Modeling and Optimization in Networks.

https://lemon.elte.hu/.

[2] P. Beeley. Foundry Technology. Butterworth-Heinemann, 2001.

[3] Marco Lübbecke. Column Generation. 01 2011.

5


