CHROMATIC NUMBER OF ODD DISTANCE GRAPHS ON A CIRCLE

Gyenizse-Nagy András

Supervisor: Damásdi Gábor

MOTIVATION

G^{odd} :

- V(G): points of the Euclidean plane
- E(G): odd length segments

What is the chromatic number of the odd distance graph G^{odd} ?

Davies: Can't be colored with finite many colors \rightarrow What about circles on the plane?

OVERVIEW

- *G*^{*r*}:
 - $V(G^r)$: points of a circle
 - $E(G^r)$: odd distances between vertices
- Main question: How many colors are needed to color G^r ?
- Depends largely on the radius, only countable many cases are interesting

• $r = p\sqrt{Q}$, $p \in \mathbb{Q}$, Q square free integer

RESIDUAL OF AN ANGLE

- Let α be an angle, such that:
 - $sin(\alpha) = p\sqrt{D}$, where p is rational, and D is a square-free integer
 - $\cos(\alpha)$ is rational
 - Then α has a residual D
- Most of the angles doesn't have a residual
- Central angle of a chord has a residual
- For a given residual these angles are closed under addition
- Cycle:

$$\sum_{i} \alpha_{i} = 2k\pi$$

THEOREM 1

- Fix a P point on the circle, and for every point Q let the central angle be POQ∡.
- It is sufficient to properly k-color the points whose central angle has a residual D for each D square-free integer.

THEOREM 2

For $D \neq D_r$ the graph G_D is 2-colorable, where G_D is the subgraph of G^r induced by the points with residual D, and $r = p \sqrt{D_R}$.

THEOREM 3

Given a circle of radius $\frac{a}{b}\sqrt{D_R}$, the subgraph of G^{odd} on the circle G_{D_R} is trivial, if

- $2 \nmid b \text{ and } D_R \not\equiv 3 \text{ or } 7 \mod 8$
- 2 | b but 4 \nmid b and $D_R \not\equiv 1 \text{ or } 5 \mod 8$

FURTHER RESEARCH

- In the next semester my aim is to examine the chromatic number of G_{D_R} for various R, and find useful properties, that can help in the investigation of this topic.
- Searching for non-trivial cases with computer

THANK YOU FOR LISTENING!