
Optimization of foundry production processes

Anna Kelemen
Supervisor: Alpár Jüttner

2024 December

1. Introduction

Casting is the primary process carried out in a foundry, where melted metal is poured into a mold, where
after cooling and solidifying, it reaches its new form. In order to perform this task, various preparations
are needed - the molds of the workpieces have to be prepared and assembled. When casting objects with
internal cavities, it is also necessary to prepare a core which can be inserted into the mold. These molds
(and cores) then have to be assembled in order to produce the desired shape when metal is poured into
them.

The variety of mold and core types, preparation and assembly times, alloy types, deadlines, and the
capacities of working shifts make manually scheduling these tasks difficult. This semester, my project
focused on modelling the production process for mold and core making, assembling, and casting of various
objects using an integer programming (IP) formulation.

2. IP model

Scheduling the tasks and assigning the objects to casting shifts represent a combined problem of bin
packing and scheduling. When scheduling the tasks, the first step is deciding what to consider optimal.
In the casting process, due to the high costs of metal melting, it is important to minimize the number
of casting rounds. To reduce operational inventory and due to space limitations, it is also important to
complete each task as close to its deadline as possible without exceeding it.

Suppose that there are two types of shifts: one used only for casting and the other for all remaining
tasks. During a casting shift, it is possible to complete up to K rounds of casting, with each round
processing at most 4 tonnes of the same type of metal. In an assembly shift, it is possible to finish at
most L tasks, while the tasks shouldn’t overlap and their total length shouldn’t exceed the amount of
time available in the shift. There are specified waiting times between the consecutive processes (i.e. mold
making and assembly, core making and assembly, assembly and casting) of a workpiece during which no
further work can be done on that object.

Considering all these constraints, we can formulate an IP that will provide the optimal scheduling of
the tasks, where using only ϵ ≥ 0 times more rounds of casting than necessary, we can achieve the least
waiting time possible. Let I = {1, ..., n} , J1 = {1, ..., C} , J2 = {1, ..., A} , κ1 = {1, ...,K} ,
κ2 = {1, ..., L}, where A and C denote the number of assembly and casting shifts and n is the number
of objects needing to be cast. First, we solve the following IP excluding all but (2) and (10)-(16),

minimizing the objective

C∑
j=1

K∑
k=1

vjk. This way, we know the minimum number of G casting rounds

required for producing every product. Then we solve the IP once more, now including all constraints and
choosing the value of ϵ.

For the sake of completeness, the whole IP formulation is included in the appendix, and the following
paragraphs will include a short explanation of the constraints and variables.

Every object has its deadline, weight, alloy type, mold and core making time, assembly time and
the required waiting times between the different tasks given as Di, wi, ti,mi, ci, ai, mwi, cwi, awi. We
are given the type of each shift — either casting or assembly — as well as their start and end times:
CSj , CEj for the casting and ASj , AEj for the assembly shifts. Using this information, we can determine
for each object i the last casting shift j in which the object can be cast such that it still can be completed
before its deadline Di.

zijk: binary variable, 1 if the casting of the ith object happens in the kth round of the jth casting shift
Xm

ijk: binary variable, 1 if making the mold of the ith object is the kth task of the jth assembly shift

1



Xc
ijk: binary variable, 1 if making the core of the ith object is the kth task of the jth assembly shift

Xa
ijk: binary variable, 1 if assembling the ith object is the kth task of the jth assembly shift

vjk: binary variable, 1 if there is an object, whose casting happens in the kth round of the jth casting
shift
uij : binary variable, 1 if the casting of the ith object happens in the jth casting shift
mtjk: the code representing the type of metal cast in the kth round of the jth casting shift
Sjk: the start time of the kth task of the jth assembly shift
Tjk: the duration of the kth task of the jth assembly shift
Y m
i : the start time of the mold making for the ith object

Y c
i : the start time of the core making for the ith object

Y a
i : the start time of the assembly of the ith object

(2) ensures that every object is cast before its deadline and (1) guarantees that no more than ϵ-times the
essential number of casting rounds are used. (3)-(9) ensure that for each object, every task is completed
and the required waiting times are kept between them. (10) is for keeping the weight limit in each
casting round and (11)-(12) assigns the type of metal to be cast in each round. (13)-(14) and (15)-(16)
are responsible for setting the values of vjk and uij .

(17)-(19) allocates the tasks of the jth shift into the time interval assigned to that shift and (20)-(31)
ensure that if the task of the mold-making/core-making/assembling of the ith object is assigned to be the
kth task of the jth shift, then the start time of that task equals to the start time of the kth task of the
jth shift and their duration is the same. We achieve this by choosing a sufficiently large N that ensures
that the two variables corresponding to these in an inequality are forced to be equal when required or
remain independent when there is no need for them to be equal.

The objective is to minimize the sum of the time differences between the deadline and the completion
time of each task for every object, which is exactly what is needed:

obj =

n∑
i=1

Di −
C∑

j=1

uij · CEj

+

 C∑
j=1

uij · CSj − awi − ai − Y a
i

+

+(Y a
i −mwi −mi − Y m

i ) + (Y a
i − cwi − ci − Y c

i )]

2.1. Implementation

This semester I used the CP-SAT solver from Google’s OR-Tools library in Python to solve the presented
IP. The initial testing shows that for small values of n (n ≤ 10), it delivered results relatively quickly
(under 1 minute) and when used to determine the minimum required casting rounds only, it even per-
formed well for larger values (n ≤ 30). However, when tested on the three-month order population data
from a foundry, the running time was too slow.

3. Future goals

The aim this semester was to establish a model, and the goal for future projects is to explore the theoretical
background in more depth and speed up the IP-solving algorithm. This could be achieved either by using
a two-phase approach, separating the scheduling of casting and assembly tasks or by applying cutting
plane, relaxation or other heuristic methods for a faster algorithm.

References

[1] P. Beeley. Foundry Technology. Butterworth-Heinemann, 2001.

2



A. IP

min {obj}

C∑
j=1

K∑
k=1

vjk ≤ (1 + ϵ) ·G (1)

di∑
j=1

K∑
k=1

zijk = 1 ∀i ∈ I (2)

Y m
i +mi +mwi ≤ Y a

i ∀i ∈ I (3)

Y c
i + ci + cwi ≤ Y a

i ∀i ∈ I (4)

Y a
i + ai + awi ≤ Di ∀i ∈ I (5)

A∑
j=1

L∑
k=1

Xm
ijk = 1 ∀i ∈ I (6)

A∑
j=1

L∑
k=1

Xc
ijk = 1 ∀i ∈ I (7)

A∑
j=1

L∑
k=1

Xa
ijk = 1 ∀i ∈ I (8)

n∑
i=1

Xm
ijk +Xc

ijk +Xa
ijk ≤ 1 ∀j ∈ J2,∀k ∈ κ2 (9)

n∑
i=1

zijk · wi ≤ 4000 ∀j ∈ J1,∀k ∈ κ1 (10)

mtjk ≤ ti + (1− zijk) ∀j ∈ J1, k ∈ κ1, i ∈ I (11)

mtjk ≥ ti − (1− zijk) ∀j ∈ J1, k ∈ κ1, i ∈ I (12)

vjk ≥ zijk ∀j ∈ J1, k ∈ κ1, i ∈ I (13)

vjk ≤
n∑

i=1

zijk ∀j ∈ J1, k ∈ κ1 (14)

uij ≥ zijk ∀i ∈ I, j ∈ J1, k ∈ κ1 (15)

C∑
j=1

uij = 1 ∀i ∈ I (16)

Sjk ≥ ASj ∀j ∈ J2, k ∈ κ2 (17)

Sjk + Tjk ≤ AEj ∀j ∈ J2, k ∈ κ2 (18)

Sjk + Tjk ≤ Sj(k+1) ∀j ∈ J2, k ∈ κ2 (19)

Y m
i −Mjk ≤ N · (1−Xm

ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (20)

Mjk − Y m
i ≤ N · (1−Xm

ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (21)

mi − Tjk ≤ N · (1−Xm
ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (22)

Tjk −mi ≤ N · (1−Xm
ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (23)

Y c
i −Mjk ≤ N · (1−Xc

ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (24)

Mjk − Y c
i ≤ N · (1−Xc

ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (25)

ci − Tjk ≤ N · (1−Xc
ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (26)

Tjk − ci ≤ N · (1−Xc
ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (27)

Y a
i −Mjk ≤ N · (1−Xa

ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (28)

Mjk − Y a
i ≤ N · (1−Xa

ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (29)

ai − Tjk ≤ N · (1−Xa
ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (30)

Tjk − ai ≤ N · (1−Xa
ijk) ∀i ∈ I, j ∈ J2, k ∈ κ2 (31)

3


