
Searching and generating sparse (sub)graphs

Bence Deák

Applied Mathematics MSc

Thursday 9th January, 2025

Course: Math project I.
Supervisor: Péter Madarasi

(k , l)-sparsity

Definition
A graph G = (V ,E) is (k , l)-sparse if i(X) ≤ max{0, k |X | − l} for all
X ⊆ V . It is (k, l)-tight if |E | = k |V | − l also holds.

Example (Nash-Williams)
G can be covered by k forests ⇔ G is (k , k)-sparse.

Example (Laman)
G is minimally rigid on the plane ⇔ G is (2, 3)-tight.

The pebble game algorithm

Problem
Find the maximum size/weight sparse subgraph of a graph.

Solution
▶ Try to insert the edges greedily

▶ Maintain an orientation of the subgraph

▶ Reverse some paths in each step

Time complexity: O(nm), or O(n2) if we maintain the components.

Data structure for a pebble game heuristic

Problem
Perform the following operations on a graph G with a weight function w
on its vertices:

▶ Find the edge uv that maximizes w(u) + w(v)

▶ Increase/decrease w(u) by 1

Solution
▶ Naive (1 priority queue): amortized O(1) query and O(∆) update

▶ Sqrt decomposition (O(
√
m) priority queues): amortized O(

√
m)

query and update

Finding a maximum weight sparse subgraph in O(n2) time

Problem
Maintain the components during the pebble game algorithm to achieve
an O(n2) total running time.

Solution
▶ Bu,v indicates whether u and v are in a common component

▶ Update B accordingly upon merging

The original analysis is flawed. Instead, we bound the number of 1 to 1
(redundant) modifications in B:

▶ When merging C1, . . . ,Ct , at most 4t2 redundant modifications

▶ O(n) components arise, so O(n2) redundant modifications in total

Faster sparse graph generation

Problem
Generate all non-isomorphic (k , l)-sparse graphs up to a given size.

Solution
▶ Recursively add vertices

▶ For a new vertex s, check sparsity for all neighbourhoods

▶ Use canonization to avoid duplicates

Possible approaches for sparsity checking:

▶ Naive: O(4n) time

▶ Pebble game: O(2n · n2) time (high constant, not general)

Improvement: precalculation with DP, answer all checks in O(2n · n).

Continuation

Plans for the next semester:

▶ Implementation of the sparse graph filtering subroutine

▶ Improvements in the priority-queue-like data structure

▶ Generalize the component-based pebble game algorithm

▶ Heuristic improvements in the weighted optimization problem

