Searching and generating sparse (sub)graphs

Bence Deák

Applied Mathematics MSc

Thursday 9th January, 2025

Course: Math project I. **Supervisor:** Péter Madarasi

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(k, I)-sparsity

Definition

A graph G = (V, E) is (k, l)-sparse if $i(X) \le \max\{0, k|X| - l\}$ for all $X \subseteq V$. It is (k, l)-tight if |E| = k|V| - l also holds.

Example (Nash-Williams)

G can be covered by *k* forests \Leftrightarrow *G* is (*k*, *k*)-sparse.

Example (Laman)

G is minimally rigid on the plane \Leftrightarrow G is (2,3)-tight.

The pebble game algorithm

Problem

Find the maximum size/weight sparse subgraph of a graph.

Solution

- Try to insert the edges greedily
- Maintain an orientation of the subgraph
- Reverse some paths in each step

Time complexity: O(nm), or $O(n^2)$ if we maintain the components.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data structure for a pebble game heuristic

Problem

Perform the following operations on a graph G with a weight function w on its vertices:

- Find the edge uv that maximizes w(u) + w(v)
- ► Increase/decrease w(u) by 1

Solution

- ▶ Naive (1 priority queue): amortized O(1) query and $O(\Delta)$ update
- Sqrt decomposition $(O(\sqrt{m}) \text{ priority queues})$: amortized $O(\sqrt{m})$ query and update

Finding a maximum weight sparse subgraph in $O(n^2)$ time

Problem

Maintain the components during the pebble game algorithm to achieve an $O(n^2)$ total running time.

Solution

- B_{u,v} indicates whether u and v are in a common component
- Update B accordingly upon merging

The original analysis is flawed. Instead, we bound the number of 1 to 1 (*redundant*) modifications in B:

- ▶ When merging C_1, \ldots, C_t , at most $4t^2$ redundant modifications
- O(n) components arise, so $O(n^2)$ redundant modifications in total

- ロ ト - 4 回 ト - 4 □

Faster sparse graph generation

Problem

Generate all non-isomorphic (k, l)-sparse graphs up to a given size.

Solution

- Recursively add vertices
- For a new vertex s, check sparsity for all neighbourhoods
- Use canonization to avoid duplicates

Possible approaches for sparsity checking:

- ▶ Naive: O(4ⁿ) time
- ▶ Pebble game: $O(2^n \cdot n^2)$ time (high constant, not general)

Improvement: precalculation with DP, answer all checks in $O(2^n \cdot n)$.

Continuation

Plans for the next semester:

- Implementation of the sparse graph filtering subroutine
- Improvements in the priority-queue-like data structure
- Generalize the component-based pebble game algorithm
- Heuristic improvements in the weighted optimization problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ