
Project Work III. (2024/25 I. semester)
 Dynamic Vehicle Routing Problem

December 15, 2024

Dávid Apagyi
apagyidavid@student.elte.hu

Advisor:

Markó Horváth

Introduction
The Dynamic Vehicle Routing Problem (DVRP) involves situations where new delivery requests

are constantly being added, requiring vehicle routes to be adjusted in real time. Examples of such

scenarios include transporting goods between factories or delivering meals to customers.

In these cases, seeking a solution that is only statically optimal may not always be the best approach,

as it may lack the flexibility needed to handle dynamic changes. Instead, a more adaptive schedule

is often required, one that can efficiently accommodate new requests while minimizing delays.

During the semester, I focused on a detailed study of a competition problem previously announced

by Huawei. By the end of the semester, as part of this work, I implemented a natural algorithm to

address the challenges posed by the problem. Although this algorithm can work quite well, it is

resource intensive and does not explicitly consider the above aspects.

About the Dynamic Vehicle Routing Problem
The Dynamic Vehicle Routing Problem (DVRP) is a variation of the classical Vehicle Routing

Problem (VRP) where changes happen in real-time. In DVRP, new delivery requests or updated

traffic conditions can occur while vehicles are already on their routes. The goal is to adjust the routes

dynamically to handle these changes efficiently. This problem is critical for industries like logistics

and transportation, where real-world challenges make static planning ineffective.

Huawei Competition
Huawei and ICAPS organized an international competition focusing on a DVRP challenge [1]. The

advisor of this report, along with several colleagues from SZTAKI, participated in this competition

and achieved third place. Throughout this report, we refer to their experiences and work [2].

1

During the semester, this project focused specifically on solving this competition problem. However,

we plan to extend this work to explore other related problems in the future.

Input
We follow the notation system from reference [1]. The input consists of the following:

• A directed graph 𝐺 = (𝐹 ,𝐴), where 𝐹 is the set of factories, and 𝐴 is the set of arcs connecting

the factories. Each arc has a transportation time 𝑡𝑖𝑗.

• An order set 𝑂 = {𝑜𝑖 : 𝑖 = 1,…,𝑁}, where each order 𝑜𝑖 = (𝐹 𝑖
𝑝, 𝐹 𝑖

𝑑, 𝑞𝑖, 𝑡𝑖𝑒, 𝑡𝑖𝑙) specifies:

‣ 𝐹 𝑖
𝑝 and 𝐹 𝑖

𝑑: the pickup and delivery locations.

‣ 𝑞𝑖 = (𝑞𝑖strandard, 𝑞𝑖small, 𝑞𝑖box): the size of the order in pallets and boxes.

‣ 𝑡𝑖𝑒: the creation time of the order.

‣ 𝑡𝑖𝑙 : the committed completion time.

• A fleet of vehicles 𝑉 = {𝑣𝑘 : 𝑘 = 1,…,𝐾}, each with a loading capacity and specific shift times.

• 𝑀 nodes (factories), where each factory has limited cargo docks and work shifts. Vehicles may

need to wait if all docks are busy.

Constraints
The problem must satisfy the following constraints:

1. Order fulfillment: All orders must be served.

2. Completion time: Orders must be completed before their committed times 𝑡𝑖𝑙 .

3. Order splitting: Orders cannot be divided across multiple vehicles unless specified.

4. Vehicle capacity: No vehicle can exceed its loading capacity.

5. Work shifts: Loading and unloading must occur within shift times. (We do not take this restriction

into account.)

6. Dock limitations: Each factory has limited docks, and vehicles follow a first-come, first-serve

rule.

Implicit Constraint Assumptions
There are also some hidden constraints in the problem that are not explicitly mentioned in the

problem statement, but are assumed during the validation process:

1. Order delivery time: An order is considered delivered when the vehicle arrives at the delivery

location, regardless of whether the order has been unloaded or not. This simplifies the validation

criteria, but may differ from real-world scenarios where unloading is part of the process.

2. Handling of oversized orders: For orders that exceed the maximum capacity of a single vehicle,

splitting is allowed. To simplify this process, a greedy approach is assumed: the items in the

order are sorted by size in descending order, and items are grouped sequentially until they reach

2

the maximum capacity of the vehicle. This ensures that oversized orders are distributed across

multiple vehicles in a straightforward manner, avoiding complex optimization during splitting.

Objectives
The problem has two main objectives:

1. Minimize the total delay of orders:

𝑓1 =∑
𝑁

𝑖=1
max(0, 𝑎𝑑𝑖 − 𝑡𝑙𝑖),

where 𝑎𝑑𝑖 is the arrival time of order 𝑜𝑖, 𝑡𝑙𝑖 is the committed completion time, and 𝑁 is the total

number of orders.

2. Minimize the average travel distance of vehicles:

𝑓2 =
1
𝐾

∑
𝐾

𝑘=1
∑
𝑙𝑘−1

𝑖=1
𝑑𝑛𝑘

𝑖 ,𝑛𝑘
𝑖+1
,

where 𝑛𝑘𝑖 is the 𝑖-th node in the route of vehicle 𝑣𝑘, 𝑑𝑛𝑘
𝑖 ,𝑛𝑘

𝑖+1
 is the distance between consecutive

nodes, and 𝐾 is the total number of vehicles.

The overall objective function is:

𝑓 = 𝜆 ⋅ 𝑓1 + 𝑓2,

where 𝜆 is a large positive constant to prioritize minimizing delays. In the validator, it is fixed as

𝜆 = 10000
3600 .

Simulation framework
The advisor of this project, Markó Horváth, developed a simulation framework in Python using the

SimPy library. This framework was released during the semester [3], but we had the opportunity to

use it while it was still under development. This framework was used as the basis for implementing

the algorithms described in this report.

The framework is designed for general purposes and can handle many related problems beyond

the specific focus of this report. A significant amount of time was spent learning how to use this

framework effectively, as it plays a central role in testing and evaluating the algorithms.

This framework allows for decision points to occur periodically (every 10 minutes in the given

task), during which it provides the current state of the simulation to an external (third-party)

algorithm. The provided information includes details about the vehicles and newly received orders.

The external algorithm processes this data and returns a decision for the next step.

3

Figure 1: Illustration of the interaction between the simulation framework and the routing algorithm

as described in [3].

This structure makes it possible to implement the routing algorithm in any programming language

by using JSON files as the communication protocol. For this project, however, we chose to continue

using Python for implementing our algorithms.

Algorithms
Naive algorithm used for benchmarking
The competition organizers provided a simulation framework along with a simple example algo-

rithm. This simple algorithm assigns requests to vehicles in a round-robin fashion, cycling through

the vehicles while respecting the constraints. However, this approach typically results in inefficient

schedules with suboptimal performance.

The details of this algorithm are not discussed further in this report, as it is used only as a baseline

for comparison with the algorithms implemented in this project.

Best Insert Method
The best insert method is a heuristic designed to produce better schedules by assigning orders to

vehicles. Instead of assigning orders randomly or cyclically, this method evaluates all possible inserts

of a new order into the current schedule of each vehicle.

We go through the newly available orders one by one and check where each can be inserted into

the existing schedule. For each possible insertion, it runs an embedded simulation to calculate the

value of the objective function and selects the insertion that results in the most optimal solution.

4

This part of the implementation has the potential for parallelization, but it has not been implemented

at this stage. While this is more computationally intensive than cyclic assignment, the Best Insert

method is more effective at producing schedules that better meet the objectives of the problem.

Key components of the implementation
Simplifying the Decision
The simplify_decision and expand_decision functions are designed to streamline the decision

making process. A vehicle route consists of “visits” that determine which orders will be picked up

and delivered at a particular location. We always start with deliveries, followed by pick-ups to ensure

that last in first out (LIFO) constraints are met.

This module combines consecutive visits to the same location (with a few simple checks) into a

single visit. Without this, vehicles would unnecessarily dock, queue, and then dock again, leading

to inefficiencies in the simulation.

Route Generation
This component is responsible for generating potential insertion points for the orders. These points

are used in the subsequent evaluation phase discussed in the next section.

The task is to add a new interval to a laminar interval system, taking into account the LIFO

constraints. Two pointers are maintained to track where we want to insert the pickup and delivery

visits, and these pointers are moved as far as possible. In addition to respecting the LIFO constraints,

the capacity limits are also taken into account during this step.

Embedded decision evaluation
In addition to the available simulation framework, an evaluator was needed to evaluate the decision

candidates based on the cost functions defined for the task. Essentially, we simulate the future

operation to evaluate these decisions. This is done by continuously tracking when each vehicle’s

state will next change, and we focus on the vehicle with the earliest state change.

This component consists of two main phases: In the first phase, we initialize the next state changes

for the vehicles based on their current states. In the second phase, we run the simulation.

Results
We tested the above methods on some smaller input instances.

5

ID Number of orders Naive algorithm Best insert algorithm

#17 300 228.9 72.4
#18 300 238.0 74.4
#19 300 246.3 89.1
#22 300 237.6 86.2
#25 500 414.7 127.3
#26 500 431.7 128.5
#27 500 389.3 113.5
#28 500 345.2 99.9

Table 1: Comparison of the results between the naive algorithm and the best insert algorithm on

smaller instances shows a clear difference in performance. It is important to note that the metrics

used represent the cost of the routing algorithm, meaning that lower values indicate better perfor-

mance.

Conclusions
As expected, the simple algorithm performed significantly better than the naive approach. On the

instances tested, it consistently found better solutions, with an average cost reduction of

68.79%. However, a deeper analysis of the simulation results shows that on these smaller instances,

the vehicles rarely, if ever, had to wait. In contrast, based on the experience of this report’s advisor,

wait times become critical for larger instances. Their third-place approach in the competition

focused on optimizing these wait times.

For instances that require waiting, further analysis and simulations are needed to explore potential

improvements.

Future work
One possible direction for improvement is to implement local search methods. This approach has

already been tested, at least for instances without waiting times, as part of an individual project (see

the work of I. Hatala [4]). We expect that at the beginning of scheduling, when only a few orders

have been received, a very well-optimized schedule can make a big difference. In discussions with

Markó Horváth, based on their experience in the competition, they found that after a few iterations,

local search did not provide significant improvements to their objective function.

Another possible idea, similar the approach of M. Horváth et al. [2], is to modify the objective

function to produce better schedules. This could involve adding additional terms with carefully

chosen weights. These adjustments could help regularize the solution, making it more flexible and

better prepared for future changes.

Another interesting direction is to define policies. By this we mean simple rules that make intuitive

sense. For example, to reduce waiting times, we could limit the number of vehicles assigned to a

6

single location and dynamically adjust that limit based on past requests. This kind of approach could

also open up many possibilities for experimentation.

Beyond this individual project, I will continue to work on these ideas as part of my master’s thesis.

7

Bibliography
[1] J. Hao et al., “Introduction to The Dynamic Pickup and Delivery Problem Benchmark - ICAPS

2021 Competition,” CoRR, 2022, [Online]. Available: https://arxiv.org/abs/2202.01256

[2] M. Horváth, T. Kis, and P. Györgyi, “A cost function approximation method for dynamic

vehicle routing with docking and LIFO constraints.” [Online]. Available: https://arxiv.org/abs/

2405.01915

[3] M. Horváth and T. Tamási, “A general modeling and simulation framework for dynamic vehicle

routing.” [Online]. Available: https://arxiv.org/abs/2411.12406

[4] I. Hatala, “Dinamikus jármű útvonaltervezés [Dynamic Vehicle Routing].” [Online]. Available:

https://math-projects.elte.hu/media/works/343/report/beszamolo.pdf

[5] N. Soeffker, M. W. Ulmer, and D. C. Mattfeld, “Stochastic dynamic vehicle routing in the light of

prescriptive analytics: A review,” European Journal of Operational Research, vol. 298, no. 3, pp.

801–820, 2022, doi: https://doi.org/10.1016/j.ejor.2021.07.014.

[6] M. W. Ulmer, J. C. Goodson, D. C. Mattfeld, and B. W. Thomas, “On modeling stochastic dynamic

vehicle routing problems,” EURO Journal on Transportation and Logistics, vol. 9, no. 2, p. 100008,

2020, doi: https://doi.org/10.1016/j.ejtl.2020.100008.

[7] X. Li et al., “Learning to Optimize Industry-Scale Dynamic Pickup and Delivery Problems,”

CoRR, 2021, [Online]. Available: https://arxiv.org/abs/2105.12899

8

https://arxiv.org/abs/2202.01256
https://arxiv.org/abs/2405.01915
https://arxiv.org/abs/2405.01915
https://arxiv.org/abs/2411.12406
https://math-projects.elte.hu/media/works/343/report/beszamolo.pdf
https://doi.org/https://doi.org/10.1016/j.ejor.2021.07.014
https://doi.org/https://doi.org/10.1016/j.ejtl.2020.100008
https://arxiv.org/abs/2105.12899

	Introduction
	About the Dynamic Vehicle Routing Problem
	Huawei Competition
	Input
	Constraints
	Implicit Constraint Assumptions

	Objectives

	Simulation framework
	Algorithms
	Naive algorithm used for benchmarking
	Best Insert Method

	Key components of the implementation
	Simplifying the Decision
	Route Generation
	Embedded decision evaluation

	Results
	Conclusions
	Future work
	Bibliography

