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INTRODUCTION
The term matroids was first introduced in 1935 by H. Whitney. They have several

equivalent definitions (using circuits, rank-functions, closed sets, etc.). The following two
definitions are in terms of independent sets and in terms of the basis:

Definition 1a. A matroid is a pair M = (S,F) consisting of a ground set S and
a nonempty collection F of its subsets, called independent sets, satisfying the following
axioms:

(1) Empty set is an independent set;
(2) Any subset of an independent set is independent;
(3) The maximal independent sets of each subset of S are equicardinal, i.e., have the

same cardinality. And this maximal number is called the rank of a matroid and denoted
by r(X). In the paper [2] J. Edmonds reckons that from the mathematical programming
point of view, the equal cardinality of all bases has special meaning — namely, that every
basis is an optimum cardinality basis.

Definition 1b. A matroid is a pair M = (S,B) consisting of a ground set S and a
nonempty collection B of its subsets, called bases, satisfying the axioms:

(a) No proper subset of a basis is basis
(b) If B1 and B2 are two bases of M and s1 ∈ B1 − B2. Then there exists an element

s2 ∈ B2 −B1 such that B1 − s1 + s2 is a basis.
As it can be seen from the definitions, the main purpose of the matroids of that period

was to clarify the notion of linear (in)dependence. It took several years that J. Edmonds
[2], based on the earlier work of J. B. Kruskal and R. Rado, observed that matroids are
closely related to greedy algorithms. Since then, so many interesting relations between the
feasibility of greedy algorithms and different combinatorial structures have been observed
and have proved to be more efficient in combinatorial optimization.

With this regard, a new notion called a valuated matroid was defined by Andreas W.M.
Dress and W. Wenzel. The term valuated matroid will be abbreviated to val-matroid.
Let M = (S,B) be a matroid where B denotes the family of bases of M .

Recall that the exchange property of bases requires for two bases of M that, for any
element s1 ∈ B1−B2, there is an element s2 ∈ B2−B1 for which B1− s1+ s2 is a basis of
M . Actually, this is one of the basis axioms of a matroid when we define M with its bases.
A useful theorem of matroids is the mutual (or symmetric) exchange property which is
formulated as follows.

Proposition 1. Let B1 and B2 be bases of M . For any element s1 ∈ B1 − B2, there
is an element s2 ∈ B2 −B1 for which both B1 − s1 + s2 and B2 − s2 + s1 are bases of M .

Lemma 2.3.13 in the book of Murota [4] states that in the basis axioms of matroids,
the following weaker property implies the original basis exchange property (and hence the
mutual exchange property).

For any two distinct bases B1 and B2, there are elements s1 ∈ B1−B2 and s2 ∈ B2−B1

for which both B1 − s1 + s2 and B2 − s2 + s1 are bases of M .
This is a bit nicer than the mutual exchange property since here the role of the two

bases is symmetric. We may refer to this as the weak mutual exchange property.

Valuation of matroid.
Let ω be a function on 2S which is finite on the basis B , and is −∞ on every subset X

of S which is not a basis. The function ω is called a valuation of M (or the bases of M),
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if it is discrete concave in the sense that for any two bases B1, B2 and for any element
s1 ∈ B1 −B2, there exists an element s2 ∈ B2 −B1 for which

ω(B1) + ω(B2) ≤ ω(B1 − s1 + s2) + ω(B2 − s2 + s1). (1)

Let us consider some examples of the valuation:

Example 1. We are given the matrix matroid when the terms of the matrix are
polynomial in variables x. We consider the columns and rows of the matrix as linearly
independent sets. We take the maximum number of linearly independent columns. Here
column set is a ground set. If the matrix has m rows and they are linearly independent,
the the rank of this matrix is equal to m. Then we take m linearly independent columns.
Determinant of a matrix is not equal to 0. The largest degree of the determinant( which
is, in turn, polynomial in variable x belonging to the basis) is the valuation of the given
matroid.

Let us consider the following matrix:

P =

(
x x2

1 + x x3

)
det(P ) = x4−x2−x3. The largest degree of this polynomial is 4. Therefore, the valuation
of this basis is 4.

Example 2. Here we are given an edge-weighted bipartite graph G = (S, T ;E). This
defines a matroid M on S (this is the so-called transversal matroid) in which a subset
I ⊆ S is independent by definition if there is a matching of G covering I. The valuation
of a basis B ⊆ S, by definition is the maximum weight matching covering B. Then this
is a valuation satisfying the axioms.

We say that a basis B is an ω-maximizer if ω(B) ≥ ω(B′) holds for every basis B′ of
M .

Lemma 1. A basis B is an ω-maximizer if and only if

ω(B) ≥ ω(B − s+ t) holds for every s ∈ B, t ∈ S −B. (2)

Proof. If ω(B) < ω(B−s+ t) holds, then ω(B−s+ t) is finite, that is, B′ := B−s+ t
is a basis of M , showing that B is not a ω-maximizer.

Conversely, assume that (2) holds. Suppose indirectly that B is not an ω-maximizer.
Let B′ be an ω-maximizer basis for which |B′ ∩B| is as large as possible. Let s ∈ B−B′

be an element. By (1), there is an element s′ ∈ B′−B for which ω(B)+ω(B′) ≤ ω(B−s+
s′)+ω(B′− s′+ s). Since B′ is an ω-maximizer, we have ω(B′− s′+ s) ≤ ω(B′). Here we
cannot have equality, since then B′′ := B′−s′+s would also be an ω-maximizer for which
|B′′ ∩B| = |B′ ∩B|+1, contradicting the choice of B′. Therefore ω(B′− s′+ s) < ω(B′),
and hence

ω(B) + ω(B′) ≤ ω(B − s+ s′) + ω(B′ − s′ + s) < ω(B − s+ s′) + ω(B′),

from which ω(B) < ω(B − s+ s′), contradicting the hypothesis of the lemma.
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If ω(B) < ω(B− s+ t) holds for a pair s, t of elements with s ∈ B, t ∈ S −B, then the
operation of replacing basis B with basis B′ := B− s+ t is called a local improvement.

Lemma 1 implies that if we start with an arbitrary basis of M and apply local im-
provements as long as possible, then the final basis is an ω-maximizer. In other words,
this algorithm considers at a general step the current basis B and checks by consid-
ering all the |B||S − B| pairs s ∈ B, t ∈ S − B of elements, if there is such a pair
with ω(B) < ω(B − s + t). If there is one, then the algorithm continues with basis
B′ := B − s+ t in place of B. If no such a pair {s, t} exists, then Lemma 1 ensures that
B is an ω-maximizer. We refer to this simple as the local improvement algorithm.

If K denotes the number of distinct ω-values, then the total number of pairs {s, t}
considered for possible local change during the algorithm is O(Kr(n− r)), where r is the
rank of M and n = |S|. This implies that the local improvement algorithm is polynomial
if K is small (in the sense that K can be bounded by a polynomial of n), but nothing is
known in the general case.

There is intuitive idea to speed up the local improvement algorithm. Namely at each
step, choose the pair {s, t} in such a way that the increment ω(B − s + t) − ω(B) is as
large as possible. This approach is termed in the literature as the steepest ascent method.

Lemma 2. (Shioura.) Let B be a basis of M and Z ⊂ B a (possible empty) subset
of B for which there is an ω-maximizer basis including Z. Let s be an element of B −Z.
(A) If ω(B) ≥ ω(B − s + t) for each t ∈ S − B, then there is an ω-maximizer basis
including Z + s. (B) If there is an element t ∈ S − B for which ω(B) < ω(B − s + t)
and t is chosen in such a way that ω(B − s + t) is as large as possible, then there is an
ω-maximizer basis including Z + t.

Proof. (A) Let Bmax be an ω-maximizer basis including Z for which |Bmax ∩B| is as
large as possible.

Claim 1. s ∈ Bmax.

Proof. Suppose indirectly that s 6∈ Bmax, that is, s ∈ B − Bmax. By (1), there is an
element t ∈ Bmax −B for which

ω(B) + ω(Bmax) ≤ ω(B − s+ t) + ω(Bmax − t+ s). (3)

Since Bmax is an ω-maximizer, ω(Bmax) ≥ ω(Bmax − t + s). But here we cannot have
equality, since then B′max := Bmax − t+ s is also an ω-maximizer for which |B′max ∩ B| =
|Bmax ∩B|+ 1, contradicting the choice of Bmax.

Therefore ω(Bmax) > ω(Bmax − t + s). But this and (4) imply ω(B) < ω(B − s + t),
contradicting the hypothesis of Case (A).

(B) Let B′ := B − s + t. and Bmax be an ω-maximizer basis including Z for which
|Bmax ∩B′| is as large as possible.

Claim 2. t ∈ Bmax.

Proof. Suppose indirectly that t 6∈ Bmax, that is, t ∈ B′ − Bmax. By applying (1) to
B′ and Bmax with t in place s and with v in place t, we obtain that there is an element
v ∈ Bmax −B′ for which
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ω(B′) + ω(Bmax) ≤ ω(B′ − t+ v) + ω(Bmax − v + t). (4)

Since Bmax is an ω-maximizer, ω(Bmax) ≥ ω(Bmax − t + s). But here we cannot have
equality, since then B′max := Bmax − v + t is also an ω-maximizer for which |B′max ∩ B| =
|Bmax ∩B|+ 1, contradicting the choice of Bmax.

Therefore ω(Bmax) > ω(Bmax − v + t). But this and (4) imply ω(B − s+ t) = ω(B′) <
ω(B − s+ v), contradicting the choice of t.

This lemma was proved by Shioura in the special case when Z = 0. In the lemma, the
two cases can be discussed in a more concise, unified way (as was done by Shioura) but
the separation of the two cases makes easier to understand the proof.

Theorem 1. The local improvement algorithm, when the steepest ascent rule is applied
for selecting the subsequent basis B − s+ t, is strongly polynomial.

A proof of this result can be found in [5]. For an intermediate basis B, the algorithm
must check all pairs {s, t} with s ∈ B, t ∈ SB to select the one maximizing the increase of
ω. This requires |r||n− r| evaluations of ω, and hence the total number of ω-evaluations
is r2(n− r) + 1.

Dress-Wenzel algorithm.

The following algorithm, due to Dress and Wenzel uses a slightly more complicated
rule in the local improving algorithm for selecting the pair {s, t}, but it has the advantage
that it requires altogether at most r(n− r) + 1 ω-evaluations of ω.

The greedy algorithm of Dress and Wenzel for val-matroids runs as follows. We start
with a basis B = {s1, s2, . . . , sr} and use the given order of its elements. The algorithm
consists of r phases. In Phase i we consider element si and decide whether si should
remain in the current basis or it is changed by an element ti from outside of the current
basis. If si remains in the basis, then this is a final decision, if si is replaced by ti then
it is final that ti remains in the basis (but the element si falling out from the basis may
return at phase j (j > i) as an element tj. An example is shown below to demonstrate
this returning phenomenon.)

To be more specific, let B0 := B and consider Phase 1. Check whether there is an
element t in S−B0 for which ω(B0) < ω(B0− s1+ t1). If no such an element exists, then
we define B1 := B0 (that is, we keep s1 in the current basis), and turn to Phase 2. If
there is such a t, then we choose one, denoted by t1, for which ω(B0 − s1 + t1) is as large
as possible and replace s1 by t1, that is, B1 := B0 − s1 + t1.

To describe Phase k (k ≥ 2), suppose that basis Bk−1 has been constructed in the
previous Phase k − 1. (Note that {sk, sk+1, . . . , sr} ⊆ Bk−1). Check whether there is an
element t in S − Bk−1 for which ω(Bk−1) < ω(Bk−1 − sk + t). If no such an element
exists, then we define Bk := Bk−1 (that is, we keep sk in the current basis). If k = r, the
algorithm terminates by outputting Br, while if k < r, we turn to Phase k+1. If there is
such an element t, then we choose one, denoted by tk, for which ω(Bk−1 − sk + tk) is as
large as possible, and replace sk by tk, that is, Bk := Bk−1 − sk + tk.

Theorem 2. The final basis Br output by the algorithm is an ω-maximizer.
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Proof. This is an immediate consequence of Shioura Lemma. Consider the basis B1

resulted by Phase 1 and let z1 denote the first element B1. Then either z1 = s1 or z1 = t1
(where t1 ∈ S −B0 is the element selected by Phase 1 to replace s1). By Lemma 2, there
exists an ω-maximizer basis containing z1.

For the general case, consider Phase k. Let Z := {z1, . . . , zk−1} be the set of the first
k − 1 elements of the current basis Bk−1 determined by Phase k − 1. By induction, we
can assume that Z is a subset of an ω-maximizer basis. Let zk denote the k’th element
of Bk. Then either zk = sk or zk = tk (where tk ∈ S − Bk−1 is the element selected by
Phase k to replace sk). By Lemma 2, there exists an ω-maximizer basis including Z.

At termination in Phase r, the final Z is Br, and since Z is included by ω-maximizer
basis, the basis Br is an ω-maximizer.

Let us now show an example of how Dress-Wenzel algorithm works.

Example 3. Suppose that we have a graphic matroid (complete graph K4) with edges
denoted by 1,2,3,4,5,6. Consider the linear weight where the weight of edge i is i. In this

Figure 1
K4 matroid

case the unique max-weight basis (spanning tree) is {6, 5, 3}.
Suppose that the starting basis of the algorithm is {3, 2, 1} in this order. Then the

greedy algorithm of Dress-Wenzel at the very first step puts edge 5 to the place of edge
3. That is, at this moment edge 3 falls out of the basis. But later edge 3 must come back
since the unique max wight basis is {6, 5, 3}.

This basically means that an element removed at a certain moment from the current
basis may come back later. It is true, however, that if an element t has been added
at a certain moment to the basis, then it will stay in the basis forever. This example
demonstrates an assymmetry between the leaving and coming elements: an element that
leaves the current basis at a certain moment may come back, while an element entering
the basis at a certain moment will never leave the basis later.
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